Skip to main content
Log in

Neuroimaging the Epileptogenic Process

  • Review
  • Published:
Neurotherapeutics

Abstract

Epilepsy is one of the most common chronic neurological conditions worldwide. Anti-epileptic drugs (AEDs) can suppress seizures, but do not affect the underlying epileptic state, and many epilepsy patients are unable to attain seizure control with AEDs. To cure or prevent epilepsy, disease-modifying interventions that inhibit or reverse the disease process of epileptogenesis must be developed. A major limitation in the development and implementation of such an intervention is the current poor understanding, and the lack of reliable biomarkers, of the epileptogenic process. Neuroimaging represents a non-invasive medical and research tool with the ability to identify early pathophysiological changes involved in epileptogenesis, monitor disease progression, and assess the effectiveness of possible therapies. Here we will provide an overview of studies conducted in animal models and in patients with epilepsy that have utilized various neuroimaging modalities to investigate epileptogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Commission on Classification and Terminology of the International League Against Epilepsy (ILAE). Guidelines for epidemiologic studies on epilepsy Epilepsia 1993;34:592–596.

    Google Scholar 

  2. Banerjee PN, Filippi D, Hauser WA. The descriptive epidemiology of epilepsy—a review. Epilepsy Res 2009;85:31–45.

    PubMed Central  PubMed  Google Scholar 

  3. Begley CE, Famulari M, Annegers JF, et al. The cost of epilepsy in the United States: an estimate from population-based clinical and survey data. Epilepsia 2000;41:342–351.

    PubMed  CAS  Google Scholar 

  4. Kwan P, Schachter SC, Brodie MJ. Drug-resistant epilepsy. N Engl J Med 2011;365:919–926.

    PubMed  CAS  Google Scholar 

  5. Loeb JA. Identifying targets for preventing epilepsy using systems biology. Neurosci Lett 2011;497:205–212.

    PubMed Central  PubMed  CAS  Google Scholar 

  6. Dudek FE, Staley KJ. The time course of acquired epilepsy: implications for therapeutic intervention to suppress epileptogenesis. Neurosci Lett 2011;497:240–246.

    PubMed  CAS  Google Scholar 

  7. Mishra AM, Bai H, Gribizis A, Blumenfeld H. Neuroimaging biomarkers of epileptogenesis. Neurosci Lett 2011;497:194–204.

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Löscher W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res 2002;50:105–123.

    PubMed  Google Scholar 

  9. Thompson HJ, Lifshitz J, Marklund N, et al. Lateral fluid percussion brain injury: A 15-year review and evaluation. J Neurotrauma 2005; 22: 42–75.

    PubMed  Google Scholar 

  10. Pitkänen A, Bolkvadze T, Immonen R. Anti-epileptogenesis in rodent post-traumatic epilepsy models. Neurosci Lett 2011;497:163–171.

    PubMed  Google Scholar 

  11. Shultz SR, Cardamone L, Liu YR, et al. Can structural or functional changes following traumatic brain injury in the rat predict epileptic outcome? Epilepsia 2013;54:1240–1250.

    PubMed  Google Scholar 

  12. Goebel R. Localization of brain activity using functional magnetic resonance imaging. In: Stippich C (ed.) Clinical functional MRI. Berlin, Springer, 2007, pp. 9–51.

    Google Scholar 

  13. Karlik SJ, Stavraky RT, Taylor AW, Fox AJ, McLachlan RS. Magnetic resonance imaging and 31P spectroscopy of an interictal cortical spike focus in the rat. Epilepsia 1991;32:446–453.

    PubMed  CAS  Google Scholar 

  14. Nehlig A. Hippocampal MRI and other structural biomarkers: experimental approach to epileptogenesis. Biomark Med 2011;5:585–597.

    PubMed  CAS  Google Scholar 

  15. Roch C, Leroy C, Nehlig A, Namer IJ. Predictive value of cortical injury for the development of temporal lobe epilepsy in 21-day-old rats: an MRI approach using the lithium-pilocarpine model. Epilepsia 2002;43:1129–1136.

    PubMed  Google Scholar 

  16. Roch C, Leroy C, Nehlig A, Namer IJ. Magnetic resonance imaging in the study of the lithium-pilocarpine model of temporal lobe epilepsy in adult rats. Epilepsia 2002;43:325–335.

    PubMed  Google Scholar 

  17. van Eijsden P, Notenboom RG, Wu O, et al. In vivo 1H magnetic resonance spectroscopy, T2-weighted and diffusion-weighted MRI during lithium-pilocarpine-induced status epilepticus in the rat. Brain Res 2004;1030:11–18.

    PubMed  Google Scholar 

  18. Hsu Y, Lee WT, Chang C. Multiparametric MRI evaluation of kainic acid-induced neuronal activation in rat hippocampus. Brain 2007;130:3124–3134.

    PubMed  Google Scholar 

  19. Fabene PF, Marzola P, Sbarbati A, Bentivoglio M. Magnetic resonance imaging of changes elicited by status epilepticus in the rat brain: diffusion-weighted and T2-weighted images, regional blood volume maps, and direct correlation with tissue and cell damage. Neuroimage 2003;18:375–389.

    PubMed  CAS  Google Scholar 

  20. Fabene PF, Weiczner R, Marzola P, et al. Structural and functional MRI following 4-aminopyridine-induced seizures: a comparative imaging and anatomical study. Neurobiol Dis 2006; 21:80–89.

    PubMed  CAS  Google Scholar 

  21. Nairismägi J, Grohn OH, Kettunen MI, Nissinen J, Kauppinen RA, Pitkanen A. Progression of brain damage after status epilepticus and its association with epileptogenesis: a quantitative MRI study in a rat model of temporal lobe epilepsy. Epilepsia 2004; 45:1024–1034.

    PubMed  Google Scholar 

  22. Jupp B, Williams JP, Tesiram YA, Vosmansky M, O’Brien TJ. Hippocampal T2 signal change during amygdala kindling epileptogenesis. Epilepsia 2006; 47:41–46.

    PubMed  Google Scholar 

  23. Kharatishvili I, Immonen R, Grohn O, Pitkänen A. Quantitative diffusion MRI of hippocampus as a surrogate marker for post-traumatic epileptogenesis. Brain 2007;130:3155–3168.

    PubMed  Google Scholar 

  24. Dube C, Yu H, Nalcioglu O, Baram TZ. Serial MRI after experimental febrile seizures: altered T2 signal without neuronal death. Ann Neurol 2004;56:709–714.

    PubMed Central  PubMed  Google Scholar 

  25. Dube CM, Ravizza T, Hamamura M, et al. Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J Neurosci 2010;30:7484–7494.

    PubMed Central  PubMed  CAS  Google Scholar 

  26. Wolf OT, Dyakin V, Patel A, et al. Volumetric structural magnetic resonance imaging (MRI) of the rat hippocampus following kainic acid (KA) treatment. Brain Res 2002;934:87–96.

    PubMed  CAS  Google Scholar 

  27. Niessen HG, Angenstein F, Vielhaber S, et al. Volumetric magnetic resonance imaging of functionally relevant structural alterations in chronic epilepsy after pilocarpine-induced status epilepticus in rats. Epilepsia 2005;46:1021–1026.

    PubMed  Google Scholar 

  28. Choy M, Cheung KK, Thomas DL, Gadian DG, Lythgoe MF, Scott RC. Quantitative MRI predicts status epilepticus-induced hippocampal injury in the lithium-pilocarpine rat model. Epilepsy Res 2010;88:221–230.

    PubMed  Google Scholar 

  29. Jupp B, Williams J, Binns D, Hicks RJ, Cardamone L, Jones N, Rees S, O’Brien TJ. Hypometabolism precedes limbic atrophy and spontaneous recurrent seizures in a rat model of TLE. Epilepsia 2012;53:1233–1244.

    PubMed  Google Scholar 

  30. Liu YR, Cardamone L, Hogan RE, et al. Progressive metabolic and structural cerebral perturbations after traumatic brain injury: an in vivo imaging study in the rat. J Nucl Med 2010;51:1788–1795

    PubMed  Google Scholar 

  31. Immonen R, Kharatishvili I, Grohn O, Pitkanen A. MRI biomarkers for post-traumatic epileptogenesis. J Neurotrauma 2013;30:1305–1309.

    PubMed  Google Scholar 

  32. Bouilleret V, Cardamone L, Liu YR, et al. Confounding neurodegenerative effects of manganese for in-vivo MR imaging in rat models of brain insults. J Magn Reson Imaging 2011;34:774–784.

    PubMed  Google Scholar 

  33. Nairismägi J, Pitkänen A, Narkilahti S, Huttunen J, Kauppinen RA, Gröhn OH. Manganese-enhanced magnetic resonance imaging of mossy fiber plasticity in vivo. Neuroimage 2006;30:130–135.

    PubMed  Google Scholar 

  34. Immonen RJ, Kharatishvili I, Sierra A, Einula C, Pitkanen A, Grohn OH. Manganese enhanced MRI detects mossy fiber sprouting rather than neurodegeneration, gliosis or seizure-activity in the epileptic rat hippocampus. Neuroimage 2008;40:1718–1730.

    PubMed  Google Scholar 

  35. Malheiros JM, Polli RS, Paiva FF, et al. Manganese-enhanced magnetic resonance imaging detects mossy fiber sprouting in the pilocarpine model of epilepsy. Epilepsia 2012;53:1225–1232.

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Dedeurwaerdere S, Fang K, Chow M, et al. Manganese-enhanced MRI reflects seizure outcome in a model of mesial temporal lobe epilepsy. Neuroimage 2013;68:30–38.

    PubMed  CAS  Google Scholar 

  37. Frey L, Lepkin A, Schickedanz A, Huber K, Brown MS, Serkova N. ADC mapping and T1-weighted signal changes on post-injury MRI predict seizure susceptibility after experimental traumatic brain injury. Neurol Res 2014;36:26–37.

    PubMed  Google Scholar 

  38. Jones DK. Studying connections in the living human brain with diffusion MRI. Cortex 2008;44:936–952.

    PubMed  Google Scholar 

  39. Yagarajah M, Duncan JS. Diffusion-based magnetic resonance imaging and tractography in epilepsy. Epilepsia 2008;49:189–200.

    Google Scholar 

  40. Engel J, Thompson PM, Stern JM, Staba RJ, Bragin A, Mody I. Connectomics and epilepsy. Curr Opin Neurol 2013;26:186–194.

    PubMed  Google Scholar 

  41. Zhong J, Petroff OAC, Prichard JW, Gore JC. Changes in water diffusion and relaxation properties of rat cerebrum during status epilepticus. Magn Reson Med 1993;30:241–246.

    PubMed  CAS  Google Scholar 

  42. Prichard JW, Zhong J, Petroff OA, Gore JC. Diffusion-weighted NMR imaging changes caused by electrical activation of the brain. NMR Biomed 1995;8:359–364.

    PubMed  CAS  Google Scholar 

  43. Engelhorn T, Hufnagel A, Weise J, Baehr M, Doerfler A. Monitoring of acute generalized status epilepticus using multilocal diffusion MR imaging: early prediction of regional neuronal damage. AJNR Am J Neuroradiol 2008;28:321–327.

    Google Scholar 

  44. Wall CJ, Kendall EJ, Obenaus A. Rapid alterations in diffusion-weighted images with anatomic correlates in a rodent model of status epilepticus. AJNR Am J Neuroradiol 2000;21:1841–1852.

    PubMed  CAS  Google Scholar 

  45. Laitinen T, Sierra A, Pitkänen A, Gröhn O. Diffusion tensor MRI of axonal plasticity in the rat hippocampus. Neuroimage 2010;51:521–530.

    PubMed  Google Scholar 

  46. Sierra A, Laitinen T, Lehtimäki K, Rieppo L, Pitkänen A, Gröhn O. Diffusion tensor MRI with tract-based spatial statistics and histology reveals undiscovered lesioned areas in kainate model of epilepsy in rat. Brain Struct Funct 2011;216:123–135.

    PubMed  Google Scholar 

  47. Chahboune H, Mishra AM, DeSalvo MN, et al. DTI abnormalities in anterior corpus callosum of rats with spike-wave epilepsy, Neuroimage 2009;47:459–466.

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Jansen JFA, Lemmens EMP, Strijkers GJ, et al. Short- and long-term limbic abnormalities after experimental febrile seizures. Neurobiol Dis 2008;32:293–301.

    PubMed  Google Scholar 

  49. Duncan JS. Magnetic resonance spectroscopy. Epilepsia 1996;37:598–605.

    PubMed  CAS  Google Scholar 

  50. Filibian M, Frasca A, Maggioni D, Micotti E, Vezzani A, Ravizza T. In vivo imaging of glia activation using 1H-magnetic resonance spectroscopy to detect putative biomarkers of tissue epileptogenicity. Epilepsia 2012;53:1907–1916.

    PubMed  CAS  Google Scholar 

  51. Zahr NM, Crawford EL, Hsu O. In vivo glutamate decline associated with kainic acid-induced status epilepticus. Brain Res 2009;1300:65–78.

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Alvestad S, Hammer J, Qu H, Håberg A, Ottersen OP, Sonnewald U. Reduced astrocytic contribution to the turnover of glutamate, glutamine, and GABA characterizes the latent phase in the kainate model of temporal lobe epilepsy. J Cereb Blood Flow Metab 2011;31:1675–1686.

    PubMed Central  PubMed  CAS  Google Scholar 

  53. Najm IM, Wang Y, Hong SC, Luders HO, Ng TC, Comair YG. Temporal changes in proton MRS matabolites in rat brain. Epilepsia 1997;38:87–94.

    PubMed  CAS  Google Scholar 

  54. Ebisu T, Rooney WD, Graham SH, Mancuso A, Weiner MW, Maudsley AA. MR spectroscopic imaging and diffusion-weighted MRI for early detection of kainite induced status epilepticus in the rat. Magn Reson Med 1996;36:821–828.

    PubMed  CAS  Google Scholar 

  55. Gomes WA, Lado FA, De Lanerolle NC, Takahashi K, Pan C, Hetherington HP. Spectroscopic imaging of the pilocarpine model of human epilepsy suggests that early NAA reduction predicts epilepsy. Magn Reson Med 2007;58:230–235.

    PubMed  CAS  Google Scholar 

  56. Tokumitsu T, Mancuso A, Weinstein PR, Weiner MW, Naruse S, Maudsley AA. Metabolic and pathological effects of temporal lobe epilepsy in rat brain detected by proton spectroscopy and imaging. Brain Res 1997;744:57–67.

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Lee EM, Park GY, Im KC, et al. Changes in glucose metabolism and metabolites during the epileptogenic process in the lithium-pilocarpine model of epilepsy. Epilepsia 2012;53:860–869.

    PubMed  CAS  Google Scholar 

  58. Kleindienst A, Tolias CM, Corwin FD, et al. Assessment of cerebral S100B levels by proton magnetic resonance spectroscopy after lateral fluid-percussion injury in the rat. J Neurosurg 2005;102:1115–1121.

    PubMed  CAS  Google Scholar 

  59. Vink R, Faden AI, McIntosh TK. Changes in cellular bioenergetic state following graded traumatic brain injury in rats: determination by phosphorus 31 magnetic resonance spectroscopy. J Neurotrauma 1988;5:315–330.

    PubMed  CAS  Google Scholar 

  60. Dedeurwaerdere S, Callaghan PD, Pham T, et al. PET imaging of brain inflammation dury early epileptogenesis in a rat model of temporal lobe epilepsy. EJNMMI Res 2012;2:60.

    PubMed Central  PubMed  Google Scholar 

  61. Jones NC, Nguyen T, Corcoran NM, et al. Targeting hyperphosphorylated tau with sodium selenate suppresses seizures in rodent models. Neurobiol Dis 2012;45:897–901.

    PubMed  CAS  Google Scholar 

  62. Virdee K, Cumming P, Caprioli D, et al. Applications of positron emission tomography in animal models of neurological and neuropsychiatric disorders. Neurosci Biobehav Rev 2012;36:1188–1216.

    PubMed  Google Scholar 

  63. Chien DT, Bahri S, Szardenings AK, et al. Early clinical PET imaging results with the nivel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis 2013;34:457–468.

    PubMed  CAS  Google Scholar 

  64. Harhausen D, Sudmann V, Khojasteh U, et al. Specific imaging of inflammation with 18 dDa translocator protein ligand DPA-714 in animal models of epilepsy and stroke. PLoS One 2013;8:e69529.

    PubMed Central  PubMed  CAS  Google Scholar 

  65. Goffin K, Van Paesschen W, Dupont P, Van Laere K. Longitudinal microPET imaging of brain glucose metabolism in rat lithium-pilocarpine model of epilepsy. Exp Neurol 2009;217:205–209.

    PubMed  CAS  Google Scholar 

  66. Guo Y, Gao F, Wang S, Ding Y, Zhang H, Wang J, Ding MP. In vivo mapping of temporospatial changes in glucose utilization in rat brain during epileptogenesis: an 18F-fluorodeoxyglucose-small animal positron emission tomography study. Neuroscience 2009;162:972–979.

    PubMed  CAS  Google Scholar 

  67. Blumenfeld H. Functional MRI studies of animal models in epilepsy. Epilepsia 2007;48:18–26.

    PubMed  Google Scholar 

  68. Meyer-Lindenberg, A. From maps to mechanisms through neuroimaging of schizophrenia. Nature 2010;468:194–202.

    PubMed  CAS  Google Scholar 

  69. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 1990; 87:9868–9872.

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Ogawa S, Lee T. Blood oxygen level dependent MRI of the brain: effects of seizure induced by kainic acid in the rat. Proc Soc Magn Reson Med 1992;1:501.

    Google Scholar 

  71. Airaksinen AM, Niskanen JP, Chamberlain R, et al. Simultaneous fMRI and local field potential measurements during epileptic seizures in medetomidine-sedated rats using raser pulse sequence. Magn Reson Med 2010;64:1191–1199.

    PubMed Central  PubMed  Google Scholar 

  72. Airaksinen AM, Hekmatyar SK, Jerome N, et al. Simultaneous BOLD fMRI and local field potential measurements during kainic acid-induced seizures. Epilepsia 2012;53:1245–1253.

    PubMed  CAS  Google Scholar 

  73. Mishra AM, Bai X, Purcaro MJ, et al. Interictal resting functional connectivity in Wag/Rij rats: a possible biomarker of epilepsy. Epilepsia 2009;50:363.

    Google Scholar 

  74. Mishra AM, Bai X, Motelow JA, et al. Increased resting functional connectivity in spike-wave epilepsy in WAG/Rij rats. Epilepsia 2013;54:1214–1222.

    PubMed  Google Scholar 

  75. Nersesyan H, Hyder F, Rothman DL, Blumenfeld H. Dynamic fMRI and EEG recordings during spike-wave seizures and generalized tonic-clonic seizures in WAG/Rij rats. J Cereb Blood Flow Metab 2004;24:589–599.

    PubMed  Google Scholar 

  76. Tenney JR, Duong TQ, King JA, Ludwig R, Ferris CF. Corticothalamlic modulation during absence seizures in rats: a functional MRI assessment. Epilepsia 2003;44:1133–1140.

    PubMed Central  PubMed  Google Scholar 

  77. Schmidt MH, Pohlmann-Eden B. Neuroimaging in epilepsy: the state of the art. Epilepsia 2011;52(Suppl. 4):49–51.

    PubMed  Google Scholar 

  78. Galanopoulou AS, Moshe, S. In search of epilepsy biomarkers in the immature brain: goals, challenges and strategies. Biomark Med 2011;5:615–628.

    PubMed Central  PubMed  CAS  Google Scholar 

  79. Bernasconi A, Bernasconi N. Unveiling epileptogenic lesions: the contribution of image processing. Epilepsia 2011;52(Suppl. 4):20–24.

    PubMed  Google Scholar 

  80. VanLandingham KE, Heinz ER, Cavazos JE, Lewis DV. Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Ann Neurol 1998;43:413–426.

    PubMed  CAS  Google Scholar 

  81. Gomes WA, Shinnar, S. Prospects for imaging-related biomarkers of human epileptogenesis: a critical review. Biomark Med 2011;5:599–606.

    PubMed Central  PubMed  Google Scholar 

  82. Natsume J, Bernasconi N, Miyauchi M, Naiki M, Yokotsuka T, Sofue A, Bernasconi A. Hippocampal volumes and diffusion-weighted image findings in children with prolonged febrile seizures. Acta Neurol Scand 2007;115(4 Suppl.):25–28.

    PubMed  CAS  Google Scholar 

  83. Bartolomei F, Regis J, Donnet A, Gastaut JL. Development of focal chronic epilepsy following focal status epilepticus in adult patients. Neurophysiol Clin 1999;29:271–276.

    PubMed  CAS  Google Scholar 

  84. Provenzale JM, Barboriak DP, VanLandingham K, MacFall J, Delong D, Lewis DV. Hippocampal MRI signal hyperintensity after febrile status epilepticus is predictive of subsequent mesial temporal sclerosis. AJR Am J Roentgenol 2008;190:976–983.

    PubMed  Google Scholar 

  85. Shinnar S, Bello JA, Chan S, et al. MRI abnormalities following febrile status epilepticus in children: the FEBSTAT study. Neurology 2012;79:871–877.

    PubMed Central  PubMed  Google Scholar 

  86. Nordli DR, Jr., Moshé SL, Shinnar S, et al. Acute EEG findings in children with febrile status epilepticus: results of the FEBSTAT study. Neurology 2012;79:2180–2186.

    PubMed Central  PubMed  Google Scholar 

  87. Angeleri F, Majkowski J, Cacchiò G, et al. Posttraumatic epilepsy risk factors: one-year prospective study after head injury. Epilepsia 1999;40:1222–1230.

    PubMed  CAS  Google Scholar 

  88. Kumar R, Gupta RK, Husain M, et al. Magnetization transfer MR imaging in patients with posttraumatic epilepsy. AJNR Am J Neuroradiol 2003;24:218–224.

    PubMed  Google Scholar 

  89. Messori A, Polonara G, Carle F, Gesuita R, Salvolini U. Predicting posttraumatic epilepsy with MRI: prospective longitudinal morphologic study in adults. Epilepsia 2005;46:1472–1481.

    PubMed  Google Scholar 

  90. Cendes F. Neuroimaging predictors of AED resistance in new-onset epilepsies. Epilepsia 2011;52(Suppl. 4):7–9.

    PubMed  Google Scholar 

  91. Freeman JL, Coleman LT, Wellard RM, et al. MR imaging and spectroscopic study of epileptogenic hypothalamic hamartomas: analysis of 72 cases. AJNR Am J Neuroradiol 2004;25:450–462.

    PubMed  Google Scholar 

  92. Sisodiya SM. Wiring, dysmorphogenesis and epilepsy: a hypothesis. Seizure 1995;4:169–185.

    PubMed  CAS  Google Scholar 

  93. Cepeda C, André VM, Levin MS, et al. Epileptogenesis in pediatric cortical dysplasia: the dysmature cerebral developmental hypothesis. Epilepsy Behav 2006;9:219–235.

    PubMed  Google Scholar 

  94. Bernhardt BC, Worsley KJ, Kim H, Evans AC, Bernasconi A, Bernasconi N. Longitudinal and cross-sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy. Neurology 2009;72:1747–1754.

    PubMed Central  PubMed  CAS  Google Scholar 

  95. Gross DW. Diffusion tensor imaging in temporal lobe epilepsy. Epilepsia 2011;52(Suppl. 4):32–34.

    PubMed  Google Scholar 

  96. Morita ME, Yasuda CL, Betting LE, et al. MRI and EEG as long-term seizure outcome predictors in familial mesial temporal lobe epilepsy. Neurology 2012;79:2349–2354.

    PubMed  Google Scholar 

  97. Bernhardt BC, Rozen DA, Worsley KJ, Evans AC, Bernasconi N, Bernasconi A. Thalamo-cortical network pathology in idiopathic generalized epilepsy: insights from MRI-based morphometric correlation analysis. Neuroimage 2009;46:373–381.

    PubMed  Google Scholar 

  98. Butler T, Zaborszky L, Wang X, et al. Septal nuclei enlargement in human temporal lobe epilepsy without mesial temporal sclerosis. Neurology 2013;80:487–491.

    PubMed Central  PubMed  Google Scholar 

  99. Cavus I, Pan JW, Hetherington HP, et al. Decreased hippocampal volume on MRI is associated with increased extracellular glutamate in epilepsy patients. Epilepsia 2008;49:1358–1366.

    PubMed  Google Scholar 

  100. Gong G, Shi F, Concha L, Beaulieu C, Gross DW. Insights into the sequence of structural consequences of convulsive status epilepticus: a longitudinal MRI study. Epilepsia 2008;49:1941–1945.

    PubMed  Google Scholar 

  101. Widjaja E, Blaser S, Miller E, et al. Evaluation of subcortical white matter and deep white matter tracts in malformations of cortical development. Epilepsia 2007;48:1460–1469.

    PubMed  Google Scholar 

  102. Iannetti P, Papetti L, Nicita F, et al. Developmental anomalies of the medial septal area: possible implication for limbic epileptogenesis. Childs Nerv Syst 2011;27:765–770.

    PubMed  Google Scholar 

  103. Pan JW, Williamson A, Cavus I, et al. Neurometabolism in human epilepsy. Epilepsia 2008;49(Suppl. 3):31–41.

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Alkonyi B, Chugani HT, Juhász C. Transient focal cortical increase of interictal glucose metabolism in Sturge-Weber syndrome: implications for epileptogenesis. Epilepsia 2011;52:1265–1272.

    PubMed Central  PubMed  Google Scholar 

  105. Moosa AN, Gupta A, Jehi L, et al. Longitudinal seizure outcome and prognostic predictors after hemispherectomy in 170 children. Neurology 2013;80:253–260.

    PubMed  Google Scholar 

  106. Juhasz C. The impact of positron emission tomography imaging on the clinical management of patients with epilepsy. Expert Rev Neurother 2012;12:719–732.

    PubMed  CAS  Google Scholar 

  107. Szelies B, Sobesky J, Pawlik G, et al. Impaired benzodiazepine receptor binding in peri-lesional cortex of patients with symptomatic epilepsies studied by [(11)C]-flumazenil PET. Eur J Neurol 2002;9:137–142.

    PubMed  Google Scholar 

  108. Sata Y, Matsuda K, Mihara T, Aihara M, Yagi K, Yonekura Y. Quantitative analysis of benzodiazepine receptor in temporal lobe epilepsy: [(125)I]iomazenil autoradiographic study of surgically resected specimens. Epilepsia 2002;43:1039–1048.

    PubMed  CAS  Google Scholar 

  109. Morimoto K, Tamagami H, Matsuda K. Central-type benzodiazepine receptors and epileptogenesis: basic mechanisms and clinical validity. Epilepsia 2005;46(Suppl. 5):184–188.

    PubMed  CAS  Google Scholar 

  110. Mazzini L, Cossa FM, Angelino E, Campini R, Pastore I, Monaco F. Posttraumatic epilepsy: neuroradiologic and neuropsychological assessment of long-term outcome. Epilepsia 2003;44:569–574.

    PubMed  Google Scholar 

  111. Bernasconi A, Bernasconi N, Natsume J, Antel SB, Andermann F, Arnold DL. Magnetic resonance spectroscopy and imaging of the thalamus in idiopathic generalized epilepsy. Brain 2003;126:2447–2454.

    PubMed  CAS  Google Scholar 

  112. Park SA, Kim GS, Lee SK, et al. Interictal epileptiform discharges relate to 1H-MRS-detected metabolic abnormalities in mesial temporal lobe epilepsy. Epilepsia 2002;43:1385–1389.

    PubMed  Google Scholar 

  113. Kuzniecky R, Hugg J, Hetherington H, et al. Predictive value of 1H MRSI for outcome in temporal lobectomy. Neurology 1999;53:694–698.

    PubMed  CAS  Google Scholar 

  114. Pan JW, Spencer DD, Kuzniecky RR, Duckrow RB, Hetherington H, Spencer SS. Metabolic networks in epilepsy by MR spectroscopic imaging. Acta Neurol Scand 2012;126:411–420.

    PubMed Central  PubMed  CAS  Google Scholar 

  115. Waites AB, Briellmann RS, Saling MM, Abbott DF, Jackson GD. Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol 2006;59:335–343.

    PubMed  Google Scholar 

  116. Bettus G, Guedj E, Joyeux F, et al. Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp 2009;30:1580–1591.

    PubMed  Google Scholar 

  117. Pereira FR, Alessio A, Sercheli MS, et al. Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI. BMC Neurosci 2010;11:66.

    PubMed Central  PubMed  Google Scholar 

  118. Giblin KA, Blumenfeld H. Is epilepsy a preventable disorder? New evidence from animal models. Neuroscientist 2010;16:253–275.

    PubMed Central  PubMed  CAS  Google Scholar 

  119. Zheng P, Shultz SR, Hovens CM, Velakoulis D, Jones NC, O’Brien TJ. Hyperphosphorylated tau is implicated in acquired epilepsy and neuropsychiatric comorbidities. Mol Neurobiol 2013 Dec 10 [Epub ahead of print].

  120. Francois J, Koning E, Ferrandon A, Nehlig A. The combination of topiramate and diazepam is partially neuroprotective in the hippocampus but not antiepileptogenic in the lithium-pilocarpine model of temporal lobe epilepsy. Epilepsy Res 2006;72:147–163.

    PubMed  CAS  Google Scholar 

  121. Mani R, Pollard J, Dichter MA. Human clinical trials in antiepileptogenesis. Neurosci Lett 2011;497:251–256.

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Loscher W, Klitgaard H, Twyman RE, Schmidt D. New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov 2013;12:757–776.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors declare there is no real or perceived conflict of interest. Full conflict of interest disclosures are available in the electronic supplementary material for this article.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandy R. Shultz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1224 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shultz, S.R., O’Brien, T.J., Stefanidou, M. et al. Neuroimaging the Epileptogenic Process. Neurotherapeutics 11, 347–357 (2014). https://doi.org/10.1007/s13311-014-0258-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-014-0258-1

Key Words

Navigation