Skip to main content
Log in

Neuroimaging in Epilepsy

  • Epilepsy (CW Bazil, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

In recent years, the field of neuroimaging has undergone dramatic development. Specifically, of importance for clinicians and researchers managing patients with epilepsies, new methods of brain imaging in search of the seizure-producing abnormalities have been implemented, and older methods have undergone additional refinement. Methodology to predict seizure freedom and cognitive outcome has also rapidly progressed. In general, the image data processing methods are very different and more complicated than even a decade ago. In this review, we identify the recent developments in neuroimaging that are aimed at improved management of epilepsy patients. Advances in structural imaging, diffusion imaging, fMRI, structural and functional connectivity, hybrid imaging methods, quantitative neuroimaging, and machine-learning are discussed. We also briefly summarize the potential new developments that may shape the field of neuroimaging in the near future and may advance not only our understanding of epileptic networks as the source of treatment-resistant seizures but also better define the areas that need to be treated in order to provide the patients with better long-term outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Churchland PS, Sejnowski TJ. Perspectives on cognitive neuroscience. Science. 1988;242(4879):741–5.

    Article  CAS  PubMed  Google Scholar 

  2. Sejnowski TJ, Churchland PS, Movshon JA. Putting big data to good use in neuroscience. Nat Neurosci. 2014;17(11):1440–1. doi:10.1038/nn.3839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Luttrull M, Cornelius R, Angtuaco E, Berger K, Bykowski J, Holloway K et al. ACR Appropriateness Criteria® seizures and epilepsy. 2014.

  4. Krumholz A, Wiebe S, Gronseth GS, Gloss DS, Sanchez AM, Kabir AA, et al. Evidence-based guideline: management of an unprovoked first seizure in adults: report of the guideline development subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2015;84(16):1705–13. doi:10.1212/WNL.0000000000001487.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hakami T, McIntosh A, Todaro M, Lui E, Yerra R, Tan KM, et al. MRI-identified pathology in adults with new-onset seizures. Neurology. 2013;81(10):920–7. doi:10.1212/WNL.0b013e3182a35193.

    Article  PubMed  Google Scholar 

  6. Semah F, Picot MC, Adam C, Broglin D, Arzimanoglou A, Bazin B, et al. Is the underlying cause of epilepsy a major prognostic factor for recurrence? Neurology. 1998;51(5):1256–62.

    Article  CAS  PubMed  Google Scholar 

  7. Engel Jr J, Wiebe S, French J, Sperling M, Williamson P, Spencer D, et al. Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the quality standards subcommittee of the American Academy of Neurology, in association with the American Epilepsy Society and the American Association of Neurological Surgeons. Neurology. 2003;60(4):538–47.

    Article  PubMed  Google Scholar 

  8. Froscher W. Drug resistant epilepsy. Epileptologia. 2012;20(1):23–9.

    Google Scholar 

  9. Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med. 2000;342(5):314–9.

    Article  CAS  PubMed  Google Scholar 

  10. Tellez-Zenteno JF, Hernandez Ronquillo L, Moien-Afshari F, Wiebe S. Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis. Epilepsy Res. 2010;89(2–3):310–8. doi:10.1016/j.eplepsyres.2010.02.007.

    Article  PubMed  Google Scholar 

  11. •• Garcia Gracia C, Yardi R, Kattan MW, Nair D, Gupta A, Najm I, et al. Seizure freedom score: a new simple method to predict success of epilepsy surgery. Epilepsia. 2015;56(3):359–65. doi:10.1111/epi.12892. The authors developed and tested a simple tool for predicting epilepsy surgery outcomes based on clincial and neuroimaging measures.

    Article  PubMed  Google Scholar 

  12. Ho K, Lawn N, Bynevelt M, Lee J, Dunne J. Neuroimaging of first-ever seizure: contribution of MRI if CT is normal. Neurol Clin Pract. 2013;3(5):398–403. doi:10.1212/CPJ.0b013e3182a78f25.

    Article  Google Scholar 

  13. Krumholz A, Shinnar S, French J, Gronseth G, Wiebe S. Evidence-based guideline: management of an unprovoked first seizure in adults: report of the guideline development subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology. 2015;85(17):1526–7. doi:10.1212/01.wnl.0000473351.32413.7c.

    Article  PubMed  Google Scholar 

  14. Ladino LD, Balaguera P, Rascovsky S, Delgado J, Llano J, Hernandez-Ronquillo L, et al. Clinical benefit of 3 tesla magnetic resonance imaging rescanning in patients with focal epilepsy and negative 1.5 tesla magnetic resonance imaging. Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion. 2016;68(3):112–8.

    PubMed  Google Scholar 

  15. Grant PE. Structural MR imaging. Epilepsia. 2004;45(Suppl 4):4–16. doi:10.1111/j.0013-9580.2004.04003.x.

    Article  PubMed  Google Scholar 

  16. Coan AC, Kubota B, Bergo FP, Campos BM, Cendes F. 3T MRI quantification of hippocampal volume and signal in mesial temporal lobe epilepsy improves detection of hippocampal sclerosis. Am J Neuroradiol. 2014;35(1):77–83. doi:10.3174/ajnr.A3640.

    Article  CAS  PubMed  Google Scholar 

  17. Santyr BG, Goubran M, Lau JC, Kwan BY, Salehi F, Lee DH, et al. Investigation of hippocampal substructures in focal temporal lobe epilepsy with and without hippocampal sclerosis at 7T. J Magn Reson Imaging. 2016; doi:10.1002/jmri.25447.

    PubMed  Google Scholar 

  18. Ver Hoef LW, Paige AL, Riley KO, Cure J, Soltani M, Williams FB, et al. Evaluating hippocampal internal architecture on MRI: inter-rater reliability of a proposed scoring system. Epilepsy Res. 2013;106(1–2):146–54. doi:10.1016/j.eplepsyres.2013.05.009.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sone D, Sato N, Maikusa N, Ota M, Sumida K, Yokoyama K, et al. Automated subfield volumetric analysis of hippocampus in temporal lobe epilepsy using high-resolution T2-weighed MR imaging. NeuroImage Clinical. 2016;12:57–64. doi:10.1016/j.nicl.2016.06.008.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Adler DH, Pluta J, Kadivar S, Craige C, Gee JC, Avants BB, et al. Histology-derived volumetric annotation of the human hippocampal subfields in postmortem MRI. NeuroImage. 2014;84:505–23. doi:10.1016/j.neuroimage.2013.08.067.

    Article  PubMed  Google Scholar 

  21. Iglesias JE, Augustinack JC, Nguyen K, Player CM, Player A, Wright M, et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. NeuroImage. 2015;115:117–37. doi:10.1016/j.neuroimage.2015.04.042.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cosottini M, Frosini D, Biagi L, Pesaresi I, Costagli M, Tiberi G, et al. Short-term side-effects of brain MR examination at 7 T: a single-centre experience. Eur Radiol. 2014;24(8):1923–8. doi:10.1007/s00330-014-3177-y.

    Article  CAS  PubMed  Google Scholar 

  23. •• De Ciantis A, Barba C, Tassi L, Cosottini M, Tosetti M, Costagli M, et al. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging. Epilepsia. 2016;57(3):445–54. doi:10.1111/epi.13313. This study directly assessed the potential clinical utility of 7T MRI in patients with epilepsy. The authors found a structural lesion in 29% of patients with a single seizure-onset zone who were previously deemed MRI negative. The subgroup of patients found to have lesions only on 7T who underwent surgery all had histologically proven focal cortical dysplasia. This study highlights the potential clinical advantage of ultra-high field MRI in management of epilepsy.

    Article  PubMed  Google Scholar 

  24. Coras R, Milesi G, Zucca I, Mastropietro A, Scotti A, Figini M, et al. 7T MRI features in control human hippocampus and hippocampal sclerosis: an ex vivo study with histologic correlations. Epilepsia. 2014;55(12):2003–16. doi:10.1111/epi.12828.

    Article  PubMed  Google Scholar 

  25. Thanh Vu A, Jamison K, Glasser MF, Smith SM, Coalson T, Moeller S, et al. Tradeoffs in pushing the spatial resolution of fMRI for the 7T human connectome project. NeuroImage. 2016; doi:10.1016/j.neuroimage.2016.11.049.

    Google Scholar 

  26. Kleinnijenhuis M, van Mourik T, Norris DG, Ruiter DJ, van Cappellen van WAM, Barth M. Diffusion tensor characteristics of gyrencephaly using high resolution diffusion MRI in vivo at 7T. NeuroImage. 2015;109:378–87. doi:10.1016/j.neuroimage.2015.01.001.

    Article  PubMed  Google Scholar 

  27. Lebel RM, Wilman AH. Intuitive design guidelines for fast spin echo imaging with variable flip angle echo trains. Magn Reson Med. 2007;57(5):972–5. doi:10.1002/mrm.21220.

    Article  PubMed  Google Scholar 

  28. Busse RF, Hariharan H, Vu A, Brittain JH. Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn Reson Med. 2006;55(5):1030–7. doi:10.1002/mrm.20863.

    Article  PubMed  Google Scholar 

  29. Marques JP, Kober T, Krueger G, van der Zwaag W, Van de Moortele PF, Gruetter R. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage. 2010;49(2):1271–81. doi:10.1016/j.neuroimage.2009.10.002.

    Article  PubMed  Google Scholar 

  30. Granata F, Morabito R, Mormina E, Alafaci C, Marino S, Lagana A, et al. 3T double inversion recovery magnetic resonance imaging: diagnostic advantages in the evaluation of cortical development anomalies. Eur J Radiol. 2016;85(5):906–14. doi:10.1016/j.ejrad.2016.02.018.

    Article  PubMed  Google Scholar 

  31. Wong-Kisiel LC, Britton JW, Witte RJ, Kelly-Williams KM, Kotsenas AL, Krecke KN, et al. Double inversion recovery magnetic resonance imaging in identifying focal cortical dysplasia. Pediatr Neurol. 2016;61:87–93. doi:10.1016/j.pediatrneurol.2016.04.013.

    Article  PubMed  Google Scholar 

  32. Wychowski T, Hussain A, Tivarus ME, Birbeck GL, Berg MJ, Potchen M. Qualitative analysis of double inversion recovery MRI in drug-resistant epilepsy. Epilepsy Res. 2016;127:195–9. doi:10.1016/j.eplepsyres.2016.09.001.

    Article  PubMed  Google Scholar 

  33. •• Wang ZI, Jones SE, Jaisani Z, Najm IM, Prayson RA, Burgess RC, et al. Voxel-based morphometric magnetic resonance imaging (MRI) postprocessing in MRI-negative epilepsies. Ann Neurol. 2015;77(6):1060–75. doi:10.1002/ana.24407. This work will have significant impact in the management of epilepsy surgery patients as it demonstrates the utility of a method to identify subtle abnormalities in patients with previously MRI-negative epilepsy and correlates the resection of these abnormalities with surgical outcome. The morphometric analysis software employed in this study uses T1-weighted images that are a part of standard neuroimaging protocol and analysis that requires no advanced training.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G, et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage. 2008;41(4):1267–77. doi:10.1016/j.neuroimage.2008.03.036.

    Article  CAS  PubMed  Google Scholar 

  35. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316–29. doi:10.1016/j.nurt.2007.05.011.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed. 2010;23(7):836–48. doi:10.1002/nbm.1506.

    Article  PubMed  Google Scholar 

  37. Zhang Y, Gao Y, Zhou M, Wu J, Zee C, Wang D. A diffusional kurtosis imaging study of idiopathic generalized epilepsy with unilateral interictal epileptiform discharges in children. J Neuroradiol. 2016;43(5):339–45. doi:10.1016/j.neurad.2016.05.001.

    Article  PubMed  Google Scholar 

  38. Zhang Y, Yan X, Gao Y, Xu D, Wu J, Li Y. A preliminary study of epilepsy in children using diffusional kurtosis imaging. Clin Neuroradiol. 2013;23(4):293–300. doi:10.1007/s00062-013-0212-3.

    Article  PubMed  Google Scholar 

  39. Bonilha L, Lee CY, Jensen JH, Tabesh A, Spampinato MV, Edwards JC, et al. Altered microstructure in temporal lobe epilepsy: a diffusional kurtosis imaging study. Am J Neuroradiol. 2015;36(4):719–24. doi:10.3174/ajnr.A4185.

    Article  CAS  PubMed  Google Scholar 

  40. Lee CY, Bennett KM, Debbins JP. Sensitivities of statistical distribution model and diffusion kurtosis model in varying microstructural environments: a Monte Carlo study. J Magn Res. 2013;230:19–26. doi:10.1016/j.jmr.2013.01.014.

    Article  CAS  Google Scholar 

  41. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage. 2012;61(4):1000–16. doi:10.1016/j.neuroimage.2012.03.072.

    Article  PubMed  Google Scholar 

  42. Winston GP, Micallef C, Symms MR, Alexander DC, Duncan JS, Zhang H. Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy. Epilepsy Res. 2014;108(2):336–9. doi:10.1016/j.eplepsyres.2013.11.004.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Damoiseaux JS, Greicius MD. Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct. 2009;213(6):525–33. doi:10.1007/s00429-009-0208-6.

    Article  PubMed  Google Scholar 

  44. Middlebrooks EH, Yagmurlu K, Szaflarski JP, Rahman M, Bozkurt B. A contemporary framework of language processing in the human brain in the context of preoperative and intraoperative language mapping. Neuroradiology. 2016; doi:10.1007/s00234-016-1772-0.

    PubMed  Google Scholar 

  45. Duffau H, Moritz-Gasser S, Mandonnet E. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang. 2014;131:1–10. doi:10.1016/j.bandl.2013.05.011.

    Article  PubMed  Google Scholar 

  46. Ius T, Angelini E, Thiebaut de Schotten M, Mandonnet E, Duffau H. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a "minimal common brain". NeuroImage. 2011;56(3):992–1000. doi:10.1016/j.neuroimage.2011.03.022.

    Article  PubMed  Google Scholar 

  47. McDonald CR, Leyden KM, Hagler DJ, Kucukboyaci NE, Kemmotsu N, Tecoma ES, et al. White matter microstructure complements morphometry for predicting verbal memory in epilepsy. Cortex. 2014;58:139–50. doi:10.1016/j.cortex.2014.05.014.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L. New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain. 2005;128(Pt 4):797–810. doi:10.1093/brain/awh423.

    Article  PubMed  Google Scholar 

  49. Klein AP, Sabsevitz DS, Ulmer JL, Mark LP. Imaging of cortical and white matter language processing. Semin Ultrasound CT MR. 2015;36(3):249–59. doi:10.1053/j.sult.2015.05.011.

    Article  PubMed  Google Scholar 

  50. Papagno C, Casarotti A, Comi A, Pisoni A, Lucchelli F, Bizzi A, et al. Long-term proper name anomia after removal of the uncinate fasciculus. Brain Struct Funct. 2016;221(1):687–94. doi:10.1007/s00429-014-0920-8.

    Article  PubMed  Google Scholar 

  51. Von Der Heide RJ, Skipper LM, Klobusicky E, Olson IR. Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain. 2013;136(Pt 6):1692–707. doi:10.1093/brain/awt094.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Piper RJ, Yoong MM, Kandasamy J, Chin RF. Application of diffusion tensor imaging and tractography of the optic radiation in anterior temporal lobe resection for epilepsy: a systematic review. Clin Neurol Neurosurg. 2014;124:59–65. doi:10.1016/j.clineuro.2014.06.013.

    Article  PubMed  Google Scholar 

  53. •• Otte WM, van Eijsden P, Sander JW, Duncan JS, Dijkhuizen RM, Braun KP. A meta-analysis of white matter changes in temporal lobe epilepsy as studied with diffusion tensor imaging. Epilepsia. 2012;53(4):659–67. doi:10.1111/j.1528-1167.2012.03426.x. This meta-analysis provides valuable insight into the diffusion changes associated with TLE. They found a significant difference in structural integrity between not only TLE patients and controls but also between left and right TLE patients. Damage in left TLE is more widespread and bilateral than that seen in right TLE.

    Article  PubMed  Google Scholar 

  54. Chiang S, Levin HS, Wilde E, Haneef Z. White matter structural connectivity changes correlate with epilepsy duration in temporal lobe epilepsy. Epilepsy Res. 2016;120:37–46. doi:10.1016/j.eplepsyres.2015.12.002.

    Article  PubMed  Google Scholar 

  55. Ahmadi ME, Hagler Jr DJ, McDonald CR, Tecoma ES, Iragui VJ, Dale AM, et al. Side matters: diffusion tensor imaging tractography in left and right temporal lobe epilepsy. Am J Neuroradiol. 2009;30(9):1740–7. doi:10.3174/ajnr.A1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kemmotsu N, Girard HM, Bernhardt BC, Bonilha L, Lin JJ, Tecoma ES, et al. MRI analysis in temporal lobe epilepsy: cortical thinning and white matter disruptions are related to side of seizure onset. Epilepsia. 2011;52(12):2257–66. doi:10.1111/j.1528-1167.2011.03278.x.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pustina D, Doucet G, Sperling M, Sharan A, Tracy J. Increased microstructural white matter correlations in left, but not right, temporal lobe epilepsy. Hum Brain Mapp. 2015;36(1):85–98. doi:10.1002/hbm.22614.

    Article  PubMed  Google Scholar 

  58. Besson P, Dinkelacker V, Valabregue R, Thivard L, Leclerc X, Baulac M, et al. Structural connectivity differences in left and right temporal lobe epilepsy. NeuroImage. 2014;100:135–44. doi:10.1016/j.neuroimage.2014.04.071.

    Article  PubMed  Google Scholar 

  59. An J, Fang P, Wang W, Liu Z, Hu D, Qiu S. Decreased white matter integrity in mesial temporal lobe epilepsy: a machine learning approach. Neuroreport. 2014;25(10):788–94. doi:10.1097/wnr.0000000000000178.

    Article  PubMed  Google Scholar 

  60. Concha L, Kim H, Bernasconi A, Bernhardt BC, Bernasconi N. Spatial patterns of water diffusion along white matter tracts in temporal lobe epilepsy. Neurology. 2012;79(5):455–62. doi:10.1212/WNL.0b013e31826170b6.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pustina D, Avants B, Sperling M, Gorniak R, He X, Doucet G, et al. Predicting the laterality of temporal lobe epilepsy from PET, MRI, and DTI: a multimodal study. NeuroImage Clinical. 2015;9:20–31. doi:10.1016/j.nicl.2015.07.010.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Thivard L, Bouilleret V, Chassoux F, Adam C, Dormont D, Baulac M, et al. Diffusion tensor imaging can localize the epileptogenic zone in nonlesional extra-temporal refractory epilepsies when [(18)F]FDG-PET is not contributive. Epilepsy Res. 2011;97(1–2):170–82. doi:10.1016/j.eplepsyres.2011.08.005.

    Article  PubMed  Google Scholar 

  63. Paldino MJ, Hedges K, Zhang W. Independent contribution of individual white matter pathways to language function in pediatric epilepsy patients. NeuroImage Clinical. 2014;6:327–32. doi:10.1016/j.nicl.2014.09.017.

    Article  PubMed  PubMed Central  Google Scholar 

  64. •• Osipowicz K, Sperling MR, Sharan AD, Tracy JI. Functional MRI, resting state fMRI, and DTI for predicting verbal fluency outcome following resective surgery for temporal lobe epilepsy. J Neurosurg. 2016;124(4):929–37. doi:10.3171/2014.9.jns131422. This study evaluated the utility of a multimodal model in predicting verbal fluency outcome after dominant anterior temporal lobectomy to find that a model combining three common techniques (task-based fMRI, resting-state fMRI, and DTI) had better predictive value than did any individual test. This study highlights the potential utility of such multimodal models in predicting outcomes and may be applicable to other outcome measures in the future.

    Article  PubMed  Google Scholar 

  65. Keller SS, Glenn GR, Weber B, Kreilkamp BA, Jensen JH, Helpern JA, et al. Preoperative automated fibre quantification predicts postoperative seizure outcome in temporal lobe epilepsy. Brain. 2017;140(Pt 1):68–82. doi:10.1093/brain/aww280.

    Article  PubMed  Google Scholar 

  66. Baydin S, Gungor A, Tanriover N, Baran O, Middlebrooks EH, Rhoton Jr AL. Fiber tracts of the medial and inferior surfaces of the cerebrum. World Neurosurg. 2016; doi:10.1016/j.wneu.2016.05.016.

    PubMed  Google Scholar 

  67. Abou-Khalil B, Schlaggar BL. Is it time to replace the Wada test? Neurology. 2002;59(2):160–1.

    Article  PubMed  Google Scholar 

  68. Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M, et al. Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology. 1996;46(4):978–84.

    Article  CAS  PubMed  Google Scholar 

  69. Szaflarski JP, Holland SK, Jacola LM, Lindsell C, Privitera MD, Szaflarski M. Comprehensive presurgical functional MRI language evaluation in adult patients with epilepsy. Epilepsy Behav. 2008;12(1):74–83. doi:10.1016/j.yebeh.2007.07.015.

    Article  PubMed  Google Scholar 

  70. Janecek JK, Swanson SJ, Sabsevitz DS, Hammeke TA, Raghavan M, E Rozman M, et al. Language lateralization by fMRI and Wada testing in 229 patients with epilepsy: rates and predictors of discordance. Epilepsia. 2013;54(2):314–22. doi:10.1111/epi.12068.

    Article  PubMed  PubMed Central  Google Scholar 

  71. •• Janecek JK, Swanson SJ, Sabsevitz DS, Hammeke TA, Raghavan M, Mueller W, et al. Naming outcome prediction in patients with discordant Wada and fMRI language lateralization. Epilepsy Behav. 2013;27(2):399–403. doi:10.1016/j.yebeh.2013.02.030. This study is important as it directly assesses the outcomes in a group of patients with discordant fMRI and IAP. They found fMRI to be predictive in 70% of cases with IAP being more predictive in the remaining 30%. Given the better safety profile and localization ability of fMRI, it is critical to understand the issue of discordance if it is to replace IAP in the future. This study provides some insight into the outcome of patients with discordant findings.

    Article  PubMed  PubMed Central  Google Scholar 

  72. •• Szaflarski JP, Gloss D, Binder JR, Gaillard WD, Golby AJ, Holland SK, et al. Practice guideline summary: use of fMRI in the presurgical evaluation of patients with epilepsy: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology. 2017;88(4):395–402. doi:10.1212/WNL.0000000000003532. This is the first practice guideline to address the use of fMRI in clinical practice. It addresses the level of current evidence for various roles of fMRI in epilepsy and offers guidelines that may better standardize the performance of these exams across institutions. It also outlines the need for future research and its possible directions.

    Article  PubMed  Google Scholar 

  73. Busch RM, Floden DP, Prayson B, Chapin JS, Kim KH, Ferguson L, et al. Estimating risk of word-finding problems in adults undergoing epilepsy surgery. Neurology. 2016;87(22):2363–9. doi:10.1212/WNL.0000000000003378.

    Article  PubMed  Google Scholar 

  74. Sabsevitz DS, Swanson SJ, Hammeke TA, Spanaki MV, Possing ET, Morris 3rd GL, et al. Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology. 2003;60(11):1788–92.

    Article  CAS  PubMed  Google Scholar 

  75. Bonelli SB, Thompson PJ, Yogarajah M, Vollmar C, Powell RH, Symms MR, et al. Imaging language networks before and after anterior temporal lobe resection: results of a longitudinal fMRI study. Epilepsia. 2012;53(4):639–50. doi:10.1111/j.1528-1167.2012.03433.x.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bonelli SB, Powell RH, Yogarajah M, Samson RS, Symms MR, Thompson PJ, et al. Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. Brain. 2010;133(Pt 4):1186–99. doi:10.1093/brain/awq006.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Binder JR, Swanson SJ, Sabsevitz DS, Hammeke TA, Raghavan M, Mueller WM. A comparison of two fMRI methods for predicting verbal memory decline after left temporal lobectomy: language lateralization versus hippocampal activation asymmetry. Epilepsia. 2010;51(4):618–26. doi:10.1111/j.1528-1167.2009.02340.x.

    Article  PubMed  Google Scholar 

  78. Binder JR, Sabsevitz DS, Swanson SJ, Hammeke TA, Raghavan M, Mueller WM. Use of preoperative functional MRI to predict verbal memory decline after temporal lobe epilepsy surgery. Epilepsia. 2008;49(8):1377–94. doi:10.1111/j.1528-1167.2008.01625.x.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sidhu MK, Stretton J, Winston GP, Symms M, Thompson PJ, Koepp MJ, et al. Memory fMRI predicts verbal memory decline after anterior temporal lobe resection. Neurology. 2015;84(15):1512–9. doi:10.1212/WNL.0000000000001461.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dupont S, Duron E, Samson S, Denos M, Volle E, Delmaire C, et al. Functional MR imaging or Wada test: which is the better predictor of individual postoperative memory outcome? Radiology. 2010;255(1):128–34. doi:10.1148/radiol.09091079.

    Article  PubMed  Google Scholar 

  81. Binder JR, Gross WL, Allendorfer JB, Bonilha L, Chapin J, Edwards JC, et al. Mapping anterior temporal lobe language areas with fMRI: a multicenter normative study. NeuroImage. 2011;54(2):1465–75. doi:10.1016/j.neuroimage.2010.09.048.

    Article  PubMed  Google Scholar 

  82. Benar CG, Gross DW, Wang Y, Petre V, Pike B, Dubeau F, et al. The BOLD response to interictal epileptiform discharges. NeuroImage. 2002;17(3):1182–92.

    Article  PubMed  Google Scholar 

  83. Kobayashi E, Bagshaw AP, Grova C, Dubeau F, Gotman J. Negative BOLD responses to epileptic spikes. Hum Brain Mapp. 2006;27(6):488–97.

    Article  PubMed  Google Scholar 

  84. Espay AJ, Schmithorst VJ, Szaflarski JP. Chronic isolated hemifacial spasm as a manifestation of epilepsia partialis continua. Epilepsy Behav. 2008;12(2):332–6. doi:10.1016/j.yebeh.2007.09.002.

    Article  PubMed  Google Scholar 

  85. Kobayashi E, Bagshaw AP, Gotman J, Dubeau F. Metabolic correlates of epileptic spikes in cerebral cavernous angiomas. Epilepsy Res. 2006.

  86. Kobayashi E, Bagshaw AP, Jansen A, Andermann F, Andermann E, Gotman J, et al. Intrinsic epileptogenicity in polymicrogyric cortex suggested by EEG-fMRI BOLD responses. Neurology. 2005;64(7):1263–6.

    Article  CAS  PubMed  Google Scholar 

  87. Kobayashi E, Hawco CS, Grova C, Dubeau F, Gotman J. Widespread and intense BOLD changes during brief focal electrographic seizures. Neurology. 2006;66(7):1049–55.

    Article  CAS  PubMed  Google Scholar 

  88. Gholipour T, Moeller F, Pittau F, Dubeau F, Gotman J. Reproducibility of interictal EEG-fMRI results in patients with epilepsy. Epilepsia. 2011;52(3):433–42. doi:10.1111/j.1528-1167.2010.02768.x.

    Article  PubMed  Google Scholar 

  89. Waites AB, Shaw ME, Briellmann RS, Labate A, Abbott DF, Jackson GD. How reliable are fMRI-EEG studies of epilepsy? A nonparametric approach to analysis validation and optimization. NeuroImage. 2005;24(1):192–9.

    Article  PubMed  Google Scholar 

  90. Benar CG, Grova C, Kobayashi E, Bagshaw AP, Aghakhani Y, Dubeau F, et al. EEG-fMRI of epileptic spikes: concordance with EEG source localization and intracranial EEG. NeuroImage. 2006;30(4):1161–70.

    Article  PubMed  Google Scholar 

  91. Cunningham CB, Goodyear BG, Badawy R, Zaamout F, Pittman DJ, Beers CA, et al. Intracranial EEG-fMRI analysis of focal epileptiform discharges in humans. Epilepsia. 2012;53(9):1636–48. doi:10.1111/j.1528-1167.2012.03601.x.

    Article  PubMed  Google Scholar 

  92. Kobayashi E, Bagshaw AP, Benar CG, Aghakhani Y, Andermann F, Dubeau F, et al. Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia. 2006;47(2):343–54.

    Article  PubMed  Google Scholar 

  93. Kobayashi E, Bagshaw AP, Grova C, Gotman J, Dubeau F. Grey matter heterotopia: what EEG-fMRI can tell us about epileptogenicity of neuronal migration disorders. Brain. 2006;129(Pt 2):366–74.

    PubMed  Google Scholar 

  94. Pittau F, Dubeau F, Gotman J. Contribution of EEG/fMRI to the definition of the epileptic focus. Neurology. 2012;78(19):1479–87. doi:10.1212/WNL.0b013e3182553bf7.

    Article  PubMed  PubMed Central  Google Scholar 

  95. An D, Dubeau F, Gotman J. BOLD responses related to focal spikes and widespread bilateral synchronous discharges generated in the frontal lobe. Epilepsia. 2015;56(3):366–74. doi:10.1111/epi.12909.

    Article  PubMed  Google Scholar 

  96. Pillay N, Archer JS, Badawy RA, Flanagan DF, Berkovic SF, Jackson G. Networks underlying paroxysmal fast activity and slow spike and wave in Lennox-Gastaut syndrome. Neurology. 2013;81(7):665–73. doi:10.1212/WNL.0b013e3182a08f6a.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Salek-Haddadi A, Lemieux L, Merschhemke M, Friston KJ, Duncan JS, Fish DR. Functional magnetic resonance imaging of human absence seizures. Ann Neurol. 2003;53(5):663–7.

    Article  PubMed  Google Scholar 

  98. Bai X, Vestal M, Berman R, Negishi M, Spann M, Vega C, et al. Dynamic time course of typical childhood absence seizures: EEG, behavior, and functional magnetic resonance imaging. J Neurosci. 2010;30(17):5884–93. doi:10.1523/JNEUROSCI.5101-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Szaflarski JP, DiFrancesco M, Hirschauer T, Banks C, Privitera MD, Gotman J, et al. Cortical and subcortical contributions to absence seizure onset examined with EEG/fMRI. Epilepsy Behav. 2010;18(4):404–13. doi:10.1016/j.yebeh.2010.05.009.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Moeller F, Siebner HR, Wolff S, Muhle H, Granert O, Jansen O, et al. Simultaneous EEG-fMRI in drug-naive children with newly diagnosed absence epilepsy. Epilepsia. 2008;49(9):1510–9. doi:10.1111/j.1528-1167.2008.01626.x.

    Article  PubMed  Google Scholar 

  101. Szaflarski JP, Kay B, Gotman J, Privitera MD, Holland SK. The relationship between the localization of the generalized spike and wave discharge generators and the response to valproate. Epilepsia. 2013;54(3):471–80. doi:10.1111/epi.12062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gotman J, Grova C, Bagshaw A, Kobayashi E, Aghakhani Y, Dubeau F. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci U S A. 2005;102(42):15236–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kay BP, DiFrancesco MW, Privitera MD, Gotman J, Holland SK, Szaflarski JP. Reduced default mode network connectivity in treatment-resistant idiopathic generalized epilepsy. Epilepsia. 2013;54(3):461–70. doi:10.1111/epi.12057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kay BP, Holland SK, Privitera MD, Szaflarski JP. Differences in paracingulate connectivity associated with epileptiform discharges and uncontrolled seizures in genetic generalized epilepsy. Epilepsia. 2014;55(2):256–63. doi:10.1111/epi.12486.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zhang Z, Liao W, Chen H, Mantini D, Ding JR, Xu Q, et al. Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain. 2011;134(Pt 10):2912–28. doi:10.1093/brain/awr223.

    Article  PubMed  Google Scholar 

  106. Kay B, Szaflarski JP. EEG/fMRI contributions to our understanding of genetic generalized epilepsies. Epilepsy Behav. 2014;34:129–35. doi:10.1016/j.yebeh.2014.02.030.

    Article  PubMed  Google Scholar 

  107. Maloney TC, Tenney JR, Szaflarski JP, Vannest J. Simultaneous electroencephalography and functional magnetic resonance imaging and the identification of epileptic networks in children. J Pediatr Epilepsy. 2015;4(4):174–83. doi:10.1055/s-0035-1559812.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Moeller F, Tyvaert L, Nguyen DK, LeVan P, Bouthillier A, Kobayashi E, et al. EEG-fMRI: adding to standard evaluations of patients with nonlesional frontal lobe epilepsy. Neurology. 2009;73(23):2023–30. doi:10.1212/WNL.0b013e3181c55d17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Thornton R, Laufs H, Rodionov R, Cannadathu S, Carmichael DW, Vulliemoz S, et al. EEG correlated functional MRI and postoperative outcome in focal epilepsy. J Neurol Neurosurg Psychiatry. 2010;81(8):922–7. doi:10.1136/jnnp.2009.196253.

    Article  PubMed  Google Scholar 

  110. •• An D, Fahoum F, Hall J, Olivier A, Gotman J, Dubeau F. Electroencephalography/functional magnetic resonance imaging responses help predict surgical outcome in focal epilepsy. Epilepsia. 2013;54(12):2184–94. doi:10.1111/epi.12434. This study assessed the contributions of EEG/fMRI to the delineation of the ictal onset zone in the pre-surgical evaluation of patients with extra-temporal, treatment-resistant epilepsies. It demonstrated that the surgical outcomes depended on the degree of concordance between the spike-related BOLD signal changes and the area of resection.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Gupta L, Janssens R, Vlooswijk MC, Rouhl RP, de Louw A, Aldenkamp AP, et al. Towards prognostic biomarkers from BOLD fluctuations to differentiate a first epileptic seizure from new-onset epilepsy. Epilepsia. 2017; doi:10.1111/epi.13658.

    Google Scholar 

  112. •• Bonilha L, Jensen JH, Baker N, Breedlove J, Nesland T, Lin JJ, et al. The brain connectome as a personalized biomarker of seizure outcomes after temporal lobectomy. Neurology. 2015;84(18):1846–53. doi:10.1212/WNL.0000000000001548. This study showed 90% specificity and 83% accuracy of brain connectome to predict the outcome of temporal lobectomy in patients with TLE. Thus, if confirmed in future studies, individual variation in connectome may become a tool for predicting surgical outcomes.

    Article  PubMed  PubMed Central  Google Scholar 

  113. pethelmet | TEAM. 2017. https://www.pethelmet.org/team. Accessed 7 Feb 2017.

  114. nano-tera - RTD Projects: WearableMRI. 2017. http://www.nano-tera.ch/projects/369.php. Accessed 7 Feb 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy P. Szaflarski.

Ethics declarations

Conflict of Interest

Erik H. Middlebrooks declares no conflict of interest.

Larry Ver Hoef reports grants from National Institutes of Health.

Jerzy P. Szaflarski reports grants from the National Institutes of Health, NSF, Eisai, Inc., the Department of Defense, and Duke University/UCB Pharma. Dr. Szaflarski has also received personal fees from Serina Therapeutics, Inc., GW Pharmaceuticals, Inc., Upsher-Smith Laboratories, Inc., and grants and personal fees from NeuroPace, Inc., Sage Pharmaceuticals, Inc., and Biomedical Systems.

Human and Animal Rights and Informed Consent

The data for Fig. 1 were obtained with the approval of the Institutional Review Board at the University of Alabama at Birmingham after obtaining written consent from the subjects.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding

No funding was provided for this study. Data for Fig. 1 were obtained via grants K23EB008452 and R01NS094743 from the National Institutes of Health to LVH.

Additional information

This article is part of the Topical Collection on Epilepsy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Middlebrooks, E.H., Ver Hoef, L. & Szaflarski, J.P. Neuroimaging in Epilepsy. Curr Neurol Neurosci Rep 17, 32 (2017). https://doi.org/10.1007/s11910-017-0746-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-017-0746-x

Keywords

Navigation