Skip to main content
Log in

Anti-epileptogenic Clinical Trial Designs in Epilepsy: Issues and Options

  • Review
  • Published:
Neurotherapeutics

Abstract

Although trials with anti-seizure drugs have not shown anti-epileptogenic or disease-modifying activity in humans, new compounds are on the horizon that may require novel trial designs. We briefly discuss the unique challenges and the available options to identify innovative clinical trial designs that differentiate novel anti-epileptogenic and disease-modifying compounds, preferably early in phase II, from current anti-seizure drugs. The most important challenges of clinical testing of agents for epilepsy prevention include having sufficient preclinical evidence for a suitable agent to proceed with a human trial of an anti-epileptogenic drug, and to demonstrate the feasibility of doing such a trial. Major challenges in trial design to assess agents for disease modification include the choice of suitable study parameters, the identification of a high-risk study population, the type of control, the time and duration of treatment, and a feasible follow-up period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sillanpää M, Schmidt D. Natural history of treated childhood-onset epilepsy: prospective, long-term population-based study. Brain 2006;129:617–624.

    Article  PubMed  Google Scholar 

  2. Brodie MJ, Barry SJ, Bamagous GA, Norrie JD, Kwan P. Patterns of treatment response in newly diagnosed epilepsy. Neurology 2012;78:1548–1554.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Löscher W, Schmidt D. Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia 2011;52:657–678.

    Article  PubMed  Google Scholar 

  4. Pitkänen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 2011;10:173–186.

    Article  PubMed  Google Scholar 

  5. Löscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev 2010;62:668–700.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Löscher W, Klitgaard H, Twyman RE, Schmidt D. New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov 2013;12:757–776.

    Article  PubMed  CAS  Google Scholar 

  7. Mani R, Pollard J, Dichter MA. Human clinical trails in antiepileptogenesis. Neurosci Lett 2011;497:251–256.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Temkin NR. Preventing and treating posttraumatic seizures: the human experience. Epilepsia 2009;50:10–13.

    Article  PubMed  Google Scholar 

  9. Bialer M, White HS. Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov 2010;9:68–82.

    Article  PubMed  CAS  Google Scholar 

  10. Friedman D, French JA. Clinical trials for therapeutic assessment of antiepileptic drugs in the 21st century: obstacles and solutions. Lancet Neurol 2012;11:827–834.

    Article  PubMed  CAS  Google Scholar 

  11. French JA, White HS, Klitgaard H, Holmes GL, Privitera MD, Cole AJ, et al. Development of new treatment approaches for epilepsy: Unmet needs and opportunities. Epilepsia 2013;54:3–12.

    Article  PubMed  CAS  Google Scholar 

  12. Dichter MA, Temkin N. Management of patients at high risk for seizures and epilepsy after traumatic brain injury and other risks (the Risk of Epilepsy Development (RED) syndrome). In: Shorvon S, Perucca E, Engel J, Jr (eds) Treatment of epilepsy. 3rd ed. Oxford, John Wiley, 2009; 249–258.

    Google Scholar 

  13. Temkin NR. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia 2001;42:515–524.

    Article  PubMed  CAS  Google Scholar 

  14. Temkin NR, Dikmen SS, Wilensky AJ, Keihm J, Chabal S, Winn HR. A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N Engl J Med 1990;323:497–502.

    Article  PubMed  CAS  Google Scholar 

  15. Temkin NR, Dikmen SS, Anderson GD, Wilensky AJ, Holmes MD, Cohen W, et al. Valproate therapy for prevention of posttraumatic seizures: a randomized trial. J Neurosurg 1999;91:593–600.

    Article  PubMed  CAS  Google Scholar 

  16. Dikmen SS, Temkin NR, Miller B, Machamer J, Winn HR. Neurobehavioral effects of phenytoin prophylaxis of posttraumatic seizures. JAMA 1991;265:1271–1277.

    Article  PubMed  CAS  Google Scholar 

  17. Schmidt D. Is antiepileptogenesis a realistic goal in clinical trials? Concerns and new horizons. Epileptic Disord 2012;14:105–113.

    PubMed  Google Scholar 

  18. Hackam DG, Redelmeier DA. Translation of research evidence from animals to humans. JAMA 2006;296:1731–1732.

    PubMed  CAS  Google Scholar 

  19. Pitkänen A, Nehlig A, Brooks-Kayal AR, Dudek FE, Friedman D, Galanopoulou AS, et al. Issues related to development of antiepileptogenic therapies. Epilepsia 2013;54:35–43.

    Article  PubMed  Google Scholar 

  20. Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 2009;40:2244–2250.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ludolph AC, Bendotti C, Blaugrund E, Chio A, Greensmith L, Loeffler J-P, et al. Guidelines for preclinical animal research in ALS/MND: A consensus meeting. Amyotroph Lateral Scler 2010;11:38–45.

    Article  PubMed  Google Scholar 

  22. D'Ambrosio R, Fairbanks JP, Fender JS, Born DE, Doyle DL, Miller JW. Post-traumatic epilepsy following fluid percussion injury in the rat. Brain 2004;127:304–314.

    Article  PubMed Central  PubMed  Google Scholar 

  23. McIntosh TK, Vink R, Noble L, Yamakami I, Fernyak S, Soares H, et al. Traumatic brain injury in the rat: Characterization of a lateral fluid-percussion model. Neuroscience 1989;28:233–244.

    Article  PubMed  CAS  Google Scholar 

  24. Pitkänen A, Immonen RJ, Gröhn OH, Kharatishvili I. From traumatic brain injury to posttraumatic epilepsy: what animal models tell us about the process and treatment options. Epilepsia 2009;50:21–29.

    Article  PubMed  Google Scholar 

  25. Boucher BA, Hanes SD. Pharmacokinetic alterations after severe head injury. Clinical Pharmacokinet 1998;35:209–221.

    Article  CAS  Google Scholar 

  26. Bruns J, Hauser WA. The epidemiology of traumatic brain injury: a review. Epilepsia 2003;44:2–10.

    Article  PubMed  Google Scholar 

  27. Hesdorffer D, Logroscino G, Cascino G, Annegers J, Hauser W. Incidence of status epilepticus in Rochester, Minnesota, 1965–1984. Neurology 1998;50:735–741.

    Article  PubMed  CAS  Google Scholar 

  28. Camilo O, Goldstein LB. Seizures and epilepsy after ischemic stroke. Stroke 2004;35:1769–1775.

    Article  PubMed  Google Scholar 

  29. Herman ST. Clinical trials for prevention of epileptogenesis. Epilepsy Res 2006;68:35–38.

    Article  PubMed  Google Scholar 

  30. Meador KJ. Cognitive outcomes and predictive factors in epilepsy. Neurology 2002;58(8 Suppl. 5):S21-S26.

    Article  PubMed  Google Scholar 

  31. Sperling MR, Feldman H, Kinman J, Liporace JD, O'Connor MJ. Seizure control and mortality in epilepsy. Ann Neurol 1999;46:45–50.

    Article  PubMed  CAS  Google Scholar 

  32. Annegers J, Hauser W, Beghi E, Nicolosi A, Kurland L. The risk of unprovoked seizures after encephalitis and meningitis. Neurology 1988;38:1407.

    Article  PubMed  CAS  Google Scholar 

  33. Engel J. Biomarkers in epilepsy: introduction. Biomarkers 2011;5:537–544.

    Article  Google Scholar 

  34. Diaz-Arrastia R, Gong Y, Fair S, Scott KD, Garcia MC, Carlile MC, et al. Increased risk of late posttraumatic seizures associated with inheritance of APOE 4 Allele. Arch Neurol 2003;60:818.

    Article  PubMed  Google Scholar 

  35. Gomes WA, Shinnar S. Prospects for imaging-related biomarkers of human epileptogenesis: a critical review. Biomark Med 2011;5:599–606.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Mishra AM, Bai H, Gribizis A, Blumenfeld H. Neuroimaging biomarkers of epileptogenesis. Neurosci Lett 2011;497:194–204.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Atkinson AJ, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, Hoth DF, et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69:89–95.

    Article  Google Scholar 

  38. Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, et al. A double-blind, delayed-start trial of rasagiline in Parkinson's disease. N Engl J Med 2009;361:1268–1278.

    Article  PubMed  CAS  Google Scholar 

  39. Kwan P, Brodie MJ. Early identification of refractory epilepsy. N Engl J Med 2000;342:314–319.

    Article  PubMed  CAS  Google Scholar 

  40. Callaghan B, Schlesinger M, Rodemer W, Pollard J, Hesdorffer D, Allen Hauser W, et al. Remission and relapse in a drug-resistant epilepsy population followed prospectively. Epilepsia 2011;52:619–626.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Schiller Y, Najjar Y. Quantifying the response to antiepileptic drugs Effect of past treatment history. Neurology 2008;70:54–65.

    Article  PubMed  Google Scholar 

  42. Sillanpää M, Schmidt D. Early seizure frequency and aetiology predict long-term medical outcome in childhood-onset epilepsy. Brain 2009;132:989–998.

    Article  PubMed  Google Scholar 

  43. Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Allen Hauser W, Mathern G, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010;51:1069–1077.

    Article  PubMed  CAS  Google Scholar 

  44. Brooks-Kayal AR, Bath KG, Berg AT, Galanopoulou AS, Holmes GL, Jensen FE, et al. Issues related to symptomatic and disease-modifying treatments affecting cognitive and neuropsychiatric comorbidities of epilepsy. Epilepsia 2013;54:44–60.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Kanner AM. The treatment of depressive disorders in epilepsy: What all neurologists should know. Epilepsia 2013;54:3–12.

    Article  PubMed  CAS  Google Scholar 

  46. Annegers JF, Hauser WA, Coan SP, Rocca WA. A population-based study of seizures after traumatic brain injuries. N Engl J Med 1998;338:20–24.

    Article  PubMed  CAS  Google Scholar 

  47. Hesdorffer DC, Logroscino G, Cascino G, Annegers JF, Hauser WA. Risk of unprovoked seizure after acute symptomatic seizure: effect of status epilepticus. Ann Neurol 1998;44:908–912.

    Article  PubMed  CAS  Google Scholar 

  48. Annegers JF, Grabow JD, Kurland LT, Laws ER. The incidence, causes, and secular trends of head trauma in Olmsted County, Minnesota, 1935–1974. Neurology 1980;30:912.

    Article  PubMed  CAS  Google Scholar 

  49. Pitkänen A. Therapeutic approaches to epileptogenesis—hope on the horizon. Epilepsia 2010;51(Suppl. 3):2–17.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Annegers JF, Hauser WA, Shirts SB, Kurland LT. Factors prognostic of unprovoked seizures after febrile convulsions. N Engl J Med 1987;316:493–498.

    Article  PubMed  CAS  Google Scholar 

  51. Maytal J, Shinnar S. Febrile status epilepticus. Pediatrics 1990;86:611–616.

    PubMed  CAS  Google Scholar 

  52. Shinnar S, Pellock JM, Berg AT, O'Dell C, Driscoll SM, Maytal J, et al. Short-term outcomes of children with febrile status epilepticus. Epilepsia 2001;42:47–53.

    Article  PubMed  CAS  Google Scholar 

  53. Dubé CM, Ravizza T, Hamamura M, Zha Q, Keebaugh A, Fok K, et al. Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. J Neurosci 2010;30:7484–7494.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Shinnar S, Bello JA, Chan S, Hesdorffer DC, Lewis DV, MacFall J, et al. MRI abnormalities following febrile status epilepticus in children The FEBSTAT study. Neurology 2012;79:871–877.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Sacco RL, Boden-Albala B, Gan R, Chen X, Kargman DE, Shea S, et al. Stroke incidence among white, black, and hispanic residents of an urban community the Northern Manhattan Stroke Study. Am J Epidemiol 1998;147:259–268.

    Article  PubMed  CAS  Google Scholar 

  56. Bladin CF, Alexandrov AV, Bellavance A, Bornstein N, Chambers B, Coté R, et al. Seizures after stroke: a prospective multicenter study. Arch Neurol 2000;57:1617.

    Article  PubMed  CAS  Google Scholar 

  57. Lossius MI, Rønning OM, Slapø GD, Mowinckel P, Gjerstad L. Poststroke epilepsy: occurrence and predictors—a long-term prospective controlled study (Akershus Stroke Study). Epilepsia 2005;46:1246–1251.

    Article  PubMed  Google Scholar 

  58. Holden KR, Mellits ED, Freeman JM. Neonatal seizures I. Correlation of prenatal and perinatal events with outcomes. Pediatrics 1982;70:165–176.

    PubMed  CAS  Google Scholar 

  59. Legido A, Clancy RR, Berman PH. Neurologic outcome after electroencephalographically proven neonatal seizures. Pediatrics 1991;88:583–596.

    PubMed  CAS  Google Scholar 

  60. Ortibus E, Sum J, Hahn J. Predictive value of EEG for outcome and epilepsy following neonatal seizures. Electroencephalogr Clin Neurophysiol 1996;98:175–185.

    Article  PubMed  CAS  Google Scholar 

  61. Saliba RM, Annegers JF, Waller DK, Tyson JE, Mizrahi EM. Incidence of neonatal seizures in Harris County, Texas, 1992–1994. Am J Epidemiol 1999;150:763–769.

    Article  PubMed  CAS  Google Scholar 

  62. Mizrahi EM, Clancy RR. Neonatal seizures: Early-onset seizure syndromes and their consequences for development. Ment Retard Dev Disabil Res Rev 2000;6:229–241.

    Article  PubMed  CAS  Google Scholar 

  63. Beghi E, Nicolosi A, Kurland LT, Mulder DW, Hauser WA, Shuster L. Encephalitis and aseptic meningitis, Olmsted County, Minnesota, 1950–1981: I. Epidemiology. Ann Neurol 1984;16:283–294.

    Article  PubMed  CAS  Google Scholar 

  64. Wiederholt W, Gomez MR, Kurland LT. Incidence and prevalence of tuberous sclerosis in Rochester, Minnesota, 1950 through 1982. Neurology 1985;35:600.

    Article  PubMed  CAS  Google Scholar 

  65. Webb D, Fryer A, Osborne J. On the incidence of fits and mental retardation in tuberous sclerosis. J Med Genet 1991;28:395–397.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  66. Webb DW, Fryer AE, Osborne JP. Morbidity associated with tuberous sclerosis: a population study. Dev Med Child Neurol 1996;38:146–155.

    Article  PubMed  CAS  Google Scholar 

  67. Zeng LH, Xu L, Gutmann DH, Wong M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 2008;63:444–453.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Chu‐Shore CJ, Major P, Camposano S, Muzykewicz D, Thiele EA. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia 2010;51:1236–1241.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Table 1 was modified from a table compiled and presented by D. Friedman at the 2010 NINDS Workshop ”Anti-epileptogenesis (AEG) and disease modification: alignment and validation of clinical targets and pre-clinical models”. We thank Dr. Dale Hesdorffer and Emma Benn, MPH for assistance in compiling epidemiological data and computing sample size and NNT estimates.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Disclosures

D.S. received consultation and speaker fees and hospitality during the last 3 years from Abbott, Viropharma, and Novartis.

D. F. receives grant funding from the NIH (UL1 TR000038 from the National Center for the Advancement of Translational Science (NCATS), American Epilepsy Society, and faces. Dr. Friedman is an investigator at NYU on studies for UCB Inc/Schwarz Pharma and also receives salary support for work performed on behalf of The Epilepsy Study Consortium, a non-profit organization, for consulting and clinical trial-related activities. He receives no personal income for these activities. NYU receives a fixed amount from the Epilepsy Study Consortium towards his salary. Within the last year, The Epilepsy Study Consortium received payments for research services from Eisai Medical Research, GlaxoSmithKline, Impax, Johnson & Johnson, Mapp Pharmaceuticals, Novartis, Lundbeck, Pfizer, Sepracor, Sunovion, SK Life Science, Supernus Pharmaceuticals, UCB Inc/Schwarz Pharma, Upsher Smith, and Vertex.

DF is an investigator at NYU on studies for Eisai Medical Research, LCGH, Impax, Mapp Pharmaceuticals, Novartis, UCB Inc/Schwarz Pharma, Upsher Smith, and Vertex.

M.D. has no disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Schmidt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2291 kb)

ESM 2

(PDF 1716 kb)

ESM 3

(PDF 1716 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, D., Friedman, D. & Dichter, M.A. Anti-epileptogenic Clinical Trial Designs in Epilepsy: Issues and Options. Neurotherapeutics 11, 401–411 (2014). https://doi.org/10.1007/s13311-013-0252-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-013-0252-z

Keywords

Navigation