Skip to main content
Log in

Invasive Neurostimulation in Stroke Rehabilitation

  • Review
  • Published:
Neurotherapeutics

Abstract

The last decade has seen a growing interest in adjuvant treatments that synergistically influence mechanisms underlying rehabilitation of paretic upper limb in stroke. One such approach is invasive neurostimulation of spared cortices at the periphery of a lesion. Studies in animals have shown that during training of paretic limb, adjuvant stimulation targeting the peri-infarct circuitry enhances mechanisms of its reorganization, generating functional advantage. Success of early animal studies and clinical reports, however, failed to translate to a phase III clinical trial. As lesions in humans are diffuse, unlike many animal models, peri-infarct circuitry may not be a feasible, or consistent target across most. Instead, alternate mechanisms, such as changing transcallosal inhibition between hemispheres, or reorganization of other viable regions in motor control, may hold greater potential. Here, we review comprehensive mechanisms of clinical recovery and factors that govern which mechanism(s) become operative when. We suggest novel approaches that take into account a patient’s initial clinical–functional state, and findings from neuroimaging and neurophysiology to guide to their most suitable mechanism for ideal targeting. Further, we suggest new localization schemes, and bypass strategies that indirectly target peri-lesional circuitry, and methods that serve to counter technical and theoretical challenge in identifying and stimulating such targets at the periphery of infarcts in humans. Last, we describe how stimulation may modulate mechanisms differentially across varying phases of recovery- a temporal effect that may explain missed advantage in clinical trials and help plan for the next stage. With information presented here, future trials would effectively be able to target patient’s specific mechanism(s) with invasive (or noninvasive) neurostimulation for the greatest, most consistent benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Desrosiers J, Noreau L, Rochette A, Bourbonnais D, Bravo G, Bourget A. Predictors of long-term participation after stroke. Disabil Rehabil 2006;28:221–230.

    Article  PubMed  Google Scholar 

  2. Wilkinson PR, Wolfe CD, Warburton FG, et al. A long-term follow-up of stroke patients. Stroke 1997;28:507–512.

    Article  CAS  PubMed  Google Scholar 

  3. Ones K, Yilmaz E, Cetinkaya B, Caglar N. Quality of life for patients poststroke and the factors affecting it. J Stroke Cerebrovasc Dis 2005;14:261–266.

    Article  PubMed  Google Scholar 

  4. Bakhai A. The burden of coronary, cerebrovascular and peripheral arterial disease. Pharmacoeconomics 2004;22(Suppl. 4):11–18.

    Article  PubMed  Google Scholar 

  5. Plow (Bhatt) E, Nagpal A, Greer KH, et al. Effect of finger tracking combined with electrical stimulation on brain reorganization and hand function in subjects with stroke. Exp Brain Res 2007;182:435–447.

    Article  Google Scholar 

  6. Carey JR, Kimberley TJ, Lewis SM, et al. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 2002;125:773–788.

    Article  PubMed  Google Scholar 

  7. Volpe BT, Lynch D, Rykman-Berland A, et al. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil Neural Repair 2008;22:305–310.

    Article  PubMed  Google Scholar 

  8. Taub E, Uswatte G, Morris DM. Improved motor recovery after stroke and massive cortical reorganization following Constraint-Induced Movement therapy. Phys Med Rehabil Clin N Am 2003;14:S77-S91.

    Article  PubMed  Google Scholar 

  9. Luft AR, McCombe-Waller S, Whitall J, et al. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA 2004;292:1853–1861.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Paula Caleffi Segura A, Veloso Fontes S, Maiumi Fukujima M, de Andrade Matas SL. The impact evaluation of physical therapy on the quality of life of cerebrovascular stroke patients. Int J Rehabil Res 2006;29:243–246.

    Article  PubMed  Google Scholar 

  11. Plautz EJ, Barbay S, Frost SB, et al. Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol Res 2003;25:801–810.

    Article  PubMed  Google Scholar 

  12. Adkins DL, Campos P, Quach D, Borromeo M, Schallert K, Jones TA. Epidural cortical stimulation enhances motor function after sensorimotor cortical infarcts in rats. Exp Neurol 2006;200:356–370.

    Article  PubMed  Google Scholar 

  13. Adkins DL, Hsu JE, Jones TA. Motor cortical stimulation promotes synaptic plasticity and behavioral improvements following sensorimotor cortex lesions. Exp Neurol 2008;212:14–28.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Adkins-Muir DL, Jones TA. Cortical electrical stimulation combined with rehabilitative training: enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats. Neurol Res 2003;25:780–788.

    Article  PubMed  Google Scholar 

  15. Kleim JA, Bruneau R, VandenBerg P, MacDonald E, Mulrooney R, Pocock D. Motor cortex stimulation enhances motor recovery and reduces peri-infarct dysfunction following ischemic insult. Neurol Res 2003;25:789–793.

    Article  PubMed  Google Scholar 

  16. Teskey GC, Flynn C, Goertzen CD, Monfils MH, Young NA. Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat. Neurol Res 2003;25:794–800.

    Article  PubMed  Google Scholar 

  17. Huang M, Harvey RL, Stoykov ME, et al. Cortical stimulation for upper limb recovery following ischemic stroke: a small phase II pilot study of a fully implanted stimulator. Top Stroke Rehabil 2008;15:160–172.

    Article  PubMed  Google Scholar 

  18. Levy R, Ruland S, Weinand M, Lowry D, Dafer R, Bakay R. Cortical stimulation for the rehabilitation of patients with hemiparetic stroke: a multicenter feasibility study of safety and efficacy. J Neurosurg 2008;108:707–714.

    Article  PubMed  Google Scholar 

  19. Brown JA, Lutsep H, Cramer SC, Weinand M. Motor cortex stimulation for enhancement of recovery after stroke: case report. Neurol Res 2003;25:815–818.

    Article  PubMed  Google Scholar 

  20. Brown JA, Lutsep HL, Weinand M, Cramer SC. Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery 2006;58:464–473.

    Article  PubMed  Google Scholar 

  21. Harvey RL, Winstein CJ. Design for the everest randomized trial of cortical stimulation and rehabilitation for arm function following stroke. Neurorehabil Neural Repair 2009;23:32–44.

    Article  PubMed  Google Scholar 

  22. Cramer SC, Benson RR, Himes DM, et al. Use of functional MRI to guide decisions in a clinical stroke trial. Stroke 2005;36:e50-52.

    Article  PubMed  Google Scholar 

  23. Plow EB, Carey JR, Nudo RJ, Pascual-Leone A. Invasive cortical stimulation to promote recovery of function after stroke. Stroke 2009;40:1926–1931.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Dancause N, Nudo RJ. Shaping plasticity to enhance recovery after injury. Prog Brain Res 2011;192:273–295.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Nouri S, Cramer SC. Anatomy and physiology predict response to motor cortex stimulation after stroke. Neurology 2011;77:1076–1083.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hummel FC, Celnik P, Pascual-Leone A, et al. Controversy: Noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimul 2008;1:370–382.

    Article  PubMed  Google Scholar 

  27. Carey JR, Durfee WK, Plow (Bhatt) E, et al. Comparison of finger tracking versus simple movement training via telerehabilitation to alter hand function and cortical reorganization after stroke. Neurorehabil Neural Repair 2007;21:216–232.

    Article  PubMed  Google Scholar 

  28. Ward NS, Cohen LG. Mechanisms underlying recovery of motor function after stroke. Arch Neurol 2004;61:1844–1848.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 2007;130:170–180.

    Article  PubMed  Google Scholar 

  30. Boychuk JA, Adkins DL, Kleim JA. Distributed versus focal cortical stimulation to enhance motor function and motor map plasticity in a rodent model of ischemia. Neurorehabil Neural Repair 2011;25:88–97.

    Article  PubMed  Google Scholar 

  31. Conforto AB, Anjos SM, Saposnik G, et al. Transcranial magnetic stimulation in mild to severe hemiparesis early after stroke: a proof of principle and novel approach to improve motor function. J Neurol 2012;259:1399–1405.

    Article  PubMed  Google Scholar 

  32. Bolognini N, Vallar G, Casati C, et al. Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. Neurorehabil Neural Repair 2011;25:819–829.

    Article  PubMed  Google Scholar 

  33. Plow EB, Cunningham DA, Beall E, et al. Effectiveness and neural mechanisms associated with tDCS delivered to premotor cortex in stroke rehabilitation: study protocol for a randomized controlled trial. Trials 2013;14:331.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Cramer SC, Moore CI, Finklestein SP, Rosen BR. A pilot study of somatotopic mapping after cortical infarct. Stroke 2000;31:668–671.

    Article  CAS  PubMed  Google Scholar 

  35. Cramer SC, Nelles G, Benson RR, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997;28:2518–2527.

    Article  CAS  PubMed  Google Scholar 

  36. Cramer SC, Shah R, Juranek J, Crafton KR, Le V. Activity in the peri-infarct rim in relation to recovery from stroke. Stroke 2006;37:111–115.

    Article  PubMed  Google Scholar 

  37. Binkofski F, Seitz RJ. Modulation of the BOLD-response in early recovery from sensorimotor stroke. Neurology 2004;63:1223–1229.

    Article  PubMed  Google Scholar 

  38. Murase N, Duque J, Mazzocchio R, Cohen LG. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 2004;55:400–409.

    Article  PubMed  Google Scholar 

  39. Allred RP, Jones TA. Maladaptive effects of learning with the less-affected forelimb after focal cortical infarcts in rats. Exp Neurol 2008;210:172–181.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Allred RP, Cappellini CH, Jones TA. The “good” limb makes the “bad” limb worse: experience-dependent interhemispheric disruption of functional outcome after cortical infarcts in rats. Behav Neurosci 2010;124:124–132.

    Article  PubMed  Google Scholar 

  41. Loubinoux I, Carel C, Pariente J, et al. Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage 2003;20:2166–2180.

    Article  PubMed  Google Scholar 

  42. Feydy A, Carlier R, Roby-Brami A, et al. Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 2002;33:1610–1617.

    Article  CAS  PubMed  Google Scholar 

  43. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000;527:633–639.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Fregni F, Boggio PS, Valle AC, et al. A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke 2006;37:2115–2122.

    Article  PubMed  Google Scholar 

  45. Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci 2007;25:123–129.

    PubMed  Google Scholar 

  46. Kim YH, You SH, Ko MH, et al. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke 2006;37:1471–1476.

    Article  PubMed  Google Scholar 

  47. Hummel F, Celnik P, Giraux P, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005;128:490–499.

    Article  PubMed  Google Scholar 

  48. Takeuchi N, Tada T, Toshima M, Matsuo Y, Ikoma K. Repetitive transcranial magnetic stimulation over bilateral hemispheres enhances motor function and training effect of paretic hand in patients after stroke. J Rehabil Med 2009;41:1049–1054.

    Article  PubMed  Google Scholar 

  49. Lindenberg R, Renga V, Zhu LL, Nair D, Schlaug G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 2010;75:2176–2184.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Hummel FC, Cohen LG. Non-invasive brain stimulation. Lancet Neurol 2006;5:708–712.

    Article  PubMed  Google Scholar 

  51. Dancause N, Barbay S, Frost SB, et al. Extensive cortical rewiring after brain injury. J Neurosci 2005;25:10167–10179.

    Article  CAS  PubMed  Google Scholar 

  52. Dancause N, Barbay S, Frost SB, et al. Effects of small ischemic lesions in the primary motor cortex on neurophysiological organization in ventral premotor cortex. J Neurophysiol 2006;96:3506–3511.

    Article  PubMed  Google Scholar 

  53. Ward NS, Newton JM, Swayne OB, et al. The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. Eur J Neurosci 2007;25:1865–1873.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Liu Y, Rouiller EM. Mechanisms of recovery of dexterity following unilateral lesion of the sensorimotor cortex in adult monkeys. Exp Brain Res 1999;128:149–159.

    Article  CAS  PubMed  Google Scholar 

  55. Fridman EA, Hanakawa T, Chung M, Hummel F, Leiguarda RC, Cohen LG. Reorganization of the human ipsilesional premotor cortex after stroke. Brain 2004;127:747–758.

    Article  PubMed  Google Scholar 

  56. Dum RP, Strick PL. The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 1991;11:667–689.

    CAS  PubMed  Google Scholar 

  57. Dancause N, Barbay S, Frost SB, Mahnken JD, Nudo RJ. Interhemispheric connections of the ventral premotor cortex in a new world primate. J Comp Neurol 2007;505:701–715.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Biernaskie J, Szymanska A, Windle V, Corbett D. Bi-hemispheric contribution to functional motor recovery of the affected forelimb following focal ischemic brain injury in rats. Eur J Neurosci 2005;21:989–999.

    Article  PubMed  Google Scholar 

  59. Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM. The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A 2002;99:14518–14523.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Granziera C, Daducci A, Meskaldji DE, et al. A new early and automated MRI-based predictor of motor improvement after stroke. Neurology 2012;79:39–46.

    Article  PubMed  Google Scholar 

  61. Carmel JB, Berrol LJ, Brus-Ramer M, Martin JH. Chronic electrical stimulation of the intact corticospinal system after unilateral injury restores skilled locomotor control and promotes spinal axon outgrowth. J Neurosci 2010;30:10918–10926.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Brus-Ramer M, Carmel JB, Chakrabarty S, Martin JH. Electrical stimulation of spared corticospinal axons augments connections with ipsilateral spinal motor circuits after injury. J Neurosci 2007;27:13793–13801.

    Article  CAS  PubMed  Google Scholar 

  63. Krieg SM, Shiban E, Buchmann N, et al. Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J Neurosurg 2012;116:994–1001.

    Article  PubMed  Google Scholar 

  64. Qiu M, Darling WG, Morecraft RJ, Ni CC, Rajendra J, Butler AJ. White matter integrity is a stronger predictor of motor function than BOLD response in patients with stroke. Neurorehabil Neural Repair 2011;25:275–284.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Machado A, Azmi H, Rezai AR. Motor cortex stimulation for refractory benign pain. Clin Neurosurg 2007;54:70–77.

    PubMed  Google Scholar 

  66. Frey D, Strack V, Wiener E, Jussen D, Vajkoczy P, Picht T. A new approach for corticospinal tract reconstruction based on navigated transcranial stimulation and standardized fractional anisotropy values. Neuroimage 2012;62:1600–1609.

    Article  CAS  PubMed  Google Scholar 

  67. Ellmore TM, Beauchamp MS, O'Neill TJ, Dreyer S, Tandon N. Relationships between essential cortical language sites and subcortical pathways. J Neurosurg 2009;111:755–766.

    Article  PubMed  Google Scholar 

  68. Cunningham DA, Machado A, Rajagopalan V et al. DTI versus fMRI: accuracy and reliability in predicting response to TMS in Stroke. Annals of Neurology: Special Issue 2013 Annual Meeting. 2013;S17:S101.

  69. Machado A, Baker KB. Upside down crossed cerebellar diaschisis: proposing chronic stimulation of the dentatothalamocortical pathway for post-stroke motor recovery. Front Integr Neurosci 2012;6:20.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Baker KB, Schuster D, Cooperrider J, Machado AG. Deep brain stimulation of the lateral cerebellar nucleus produces frequency-specific alterations in motor evoked potentials in the rat in vivo. Exp Neurol 2010;226:259–264.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Machado AG, Baker KB, Schuster D, Butler RS, Rezai A. Chronic electrical stimulation of the contralesional lateral cerebellar nucleus enhances recovery of motor function after cerebral ischemia in rats. Brain Res 2009;1280:107–116.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Machado AG, Cooperrider J, Furmaga HT, et al. Chronic 30-Hz deep cerebellar stimulation coupled with training enhances post-ischemia motor recovery and peri-infarct synaptophysin expression in rodents. Neurosurgery 2013;73:344–353.

    Article  PubMed  Google Scholar 

  73. Manola L, Holsheimer J, Veltink P, Buitenweg JR. Anodal vs cathodal stimulation of motor cortex: a modeling study. Clin Neurophysiol 2007;118:464–474.

    Article  PubMed  Google Scholar 

  74. Benabid AL, Koudsie A, Benazzouz A, et al. Subthalamic stimulation for Parkinson's disease. Arch Med Res 2000;31:282–289.

    Article  CAS  PubMed  Google Scholar 

  75. Wittenberg GF, Chen R, Ishii K, et al. Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation. Neurorehabil Neural Repair 2003;17:48–57.

    Article  PubMed  Google Scholar 

  76. Smania N, Paolucci S, Tinazzi M, et al. Active finger extension: a simple movement predicting recovery of arm function in patients with acute stroke. Stroke 2007;38:1088–1090.

    Article  PubMed  Google Scholar 

  77. Plow EB, Obretenova SN, Fregni F, Pascual-Leone A, Merabet LB. Comparison of visual field training for hemianopia with active versus sham transcranial direct cortical stimulation. Neurorehabil Neural Repair 2012;26:616–626.

    Article  PubMed  Google Scholar 

  78. Iriki A, Pavlides C, Keller A, Asanuma H. Long-term potentiation in the motor cortex. Science 1989;245:1385–1387.

    Article  CAS  PubMed  Google Scholar 

  79. Golanov EV, Zhou P. Neurogenic neuroprotection. Cell Mol Neurobiol 2003;23:651–663.

    Article  PubMed  Google Scholar 

  80. Morimoto T, Yasuhara T, Kameda M, et al. Striatal stimulation nurtures endogenous neurogenesis and angiogenesis in chronic-phase ischemic stroke rats. Cell Transplant 2011;20:1049–1064.

    Article  PubMed  Google Scholar 

  81. Baba T, Kameda M, Yasuhara T, et al. Electrical stimulation of the cerebral cortex exerts antiapoptotic, angiogenic, and anti-inflammatory effects in ischemic stroke rats through phosphoinositide 3-kinase/Akt signaling pathway. Stroke 2009;40:e598-e605.

    Article  PubMed  Google Scholar 

  82. Cherney LR, Harvey RL, Babbitt EM, et al. Epidural cortical stimulation and aphasia therapy. Aphasiology 2012;26:1192–1217.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Cherney LR, Erickson RK, Small SL. Epidural cortical stimulation as adjunctive treatment for non-fluent aphasia: preliminary findings. J Neurol Neurosurg Psychiatry 2010;81:1014–1021.

    Article  PubMed  Google Scholar 

  84. Serruya MD, Kahana MJ. Techniques and devices to restore cognition. Behav Brain Res 2008;192:149–165.

    Article  PubMed Central  PubMed  Google Scholar 

  85. La Corte G, Wei Y, Chernyy N, Gluckman BJ, Schiff SJ. Frequency dependence of behavioral modulation by hippocampal electrical stimulation. J Neurophysiol 2013 Nov 6.

  86. Moriarity JL, Boatman D, Krauss GL, Storm PB, Lenz FA. Human “memories” can be evoked by stimulation of the lateral temporal cortex after ipsilateral medial temporal lobe resection. J Neurol Neurosurg Psychiatry 2001;71:549–551.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Plow EB, Pascual-Leone A, Machado A. Brain stimulation in the treatment of chronic neuropathic and non-cancerous pain. J Pain 2012;13:411–424.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Machado AG, Baker KB, Plow E, Malone DA. Cerebral stimulation for the affective component of neuropathic pain. Neuromodulation 2012 Oct 24.

  89. Plow EB, Malone DA, Jr., Machado A. Deep brain stimulation of the ventral striatum/anterior limb of the internal capsule in thalamic pain syndrome: study protocol for a pilot randomized controlled trial. Trials 2013;14:241.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Funding sources include grants from the National Institutes of Health, including NIH R01-HD061363 (AM) and K01HD069504 (EP), and American Heart Association’s 13BGIA17120055 (EP).

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ela B. Plow.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plow, E.B., Machado, A. Invasive Neurostimulation in Stroke Rehabilitation. Neurotherapeutics 11, 572–582 (2014). https://doi.org/10.1007/s13311-013-0245-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-013-0245-y

Keywords

Navigation