Skip to main content
Log in

Developing Therapeutic Antibodies for Neurodegenerative Disease

  • Review
  • Published:
Neurotherapeutics

Abstract

The central nervous system has been considered off-limits to antibody therapeutics. However, recent advances in preclinical and clinical drug development suggest that antibodies can cross the blood–brain barrier in limited quantities and act centrally to mediate their effects. In particular, immunotherapy for Alzheimer’s disease has shown that targeting beta amyloid with antibodies can reduce pathology in both mouse models and the human brain, with strong evidence supporting a central mechanism of action. These findings have fueled substantial efforts to raise antibodies against other central nervous system targets, particularly neurodegenerative targets, such as tau, beta-secretase, and alpha-synuclein. Nevertheless, it is also apparent that antibody penetration across the blood–brain barrier is limited, with an estimated 0.1–0.2 % of circulating antibodies found in brain at steady-state concentrations. Thus, technologies designed to improve antibody uptake in brain are receiving increased attention and are likely going to represent the future of antibody therapy for neurologic diseases, if proven safe and effective. Herein we review briefly the progress and limitations of traditional antibody drug development for neurodegenerative diseases, with a focus on passive immunotherapy. We also take a more in-depth look at new technologies for improved delivery of antibodies to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pangalos MN, Schechter LE, Hurko O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat Rev Drug Discov 2007;6:521–32.

    Article  PubMed  CAS  Google Scholar 

  2. Buss NA, Henderson SJ, McFarlane M, Shenton JM, de Haan L. Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol 2012;12:615–22.

    Article  PubMed  CAS  Google Scholar 

  3. Carter PJ. Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res 2011;317:1261–9.

    Article  PubMed  CAS  Google Scholar 

  4. Brody DL, Holtzman DM. Active and passive immunotherapy for neurodegenerative disorders. Annu Rev Neurosci 2008;31:175–93.

    Article  PubMed  CAS  Google Scholar 

  5. Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, et al. Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 2011;12:169–82.

    Article  PubMed  CAS  Google Scholar 

  6. Rubin LL, Staddon JM. The cell biology of the blood–brain barrier. Annu Rev Neurosci 1999;22:11–28.

    Article  PubMed  CAS  Google Scholar 

  7. Tam SJ, Watts RJ. Connecting vascular and nervous system development: angiogenesis and the blood–brain barrier. Annu Rev Neurosci 2010;33:379–408.

    Article  PubMed  CAS  Google Scholar 

  8. Brightman MW, Reese TS. Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 1969;40:648–77.

    Article  PubMed  CAS  Google Scholar 

  9. Reese TS, Karnovsky MJ. Fine structural localization of a blood–brain barrier to exogenous peroxidase. J Cell Biol 1967;34:207–17.

    Article  PubMed  CAS  Google Scholar 

  10. Lee G, Dallas S, Hong M, Bendayan R. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 2001;53:569–96.

    PubMed  CAS  Google Scholar 

  11. el-Bacha RS, Minn A. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell Mol Biol (Noisy-le-grand) 1999;45:15–23.

    CAS  Google Scholar 

  12. de Boer AG, van der Sandt IC, Gaillard PJ. The role of drug transporters at the blood–brain barrier. Annu Rev Pharmacol Toxicol 2003;43:629–56.

    Article  PubMed  CAS  Google Scholar 

  13. Ek CJ, Dziegielewska KM, Stolp H, Saunders NR. Functional effectiveness of the blood–brain barrier to small water-soluble molecules in developing and adult opossum (Monodelphis domestica). J Comp Neurol 2006;496:13–26.

    Article  PubMed  CAS  Google Scholar 

  14. Janzer RC, Raff MC. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 1987;325:253–7.

    Article  PubMed  CAS  Google Scholar 

  15. Stewart PA, Wiley MJ. Developing nervous tissue induces formation of blood–brain barrier characteristics in invading endothelial cells: a study using quail–chick transplantation chimeras. Dev Biol 1981;84:183–92.

    Article  PubMed  CAS  Google Scholar 

  16. Lai CH, Kuo KH. The critical component to establish in vitro BBB model: pericyte. Brain Res Brain Res Rev 2005;50:258–65.

    Article  PubMed  CAS  Google Scholar 

  17. Gaillard PJ, van der Sandt IC, Voorwinden LH, Vu D, Nielsen JL, de Boer AG, et al. Astrocytes increase the functional expression of P-glycoprotein in an in vitro model of the blood–brain barrier. Pharm Res 2000;17:1198–205.

    Article  PubMed  CAS  Google Scholar 

  18. Banks WA. Developing drugs that can cross the blood–brain barrier: applications to Alzheimer's disease. BMC Neurosci 2008;9(Suppl 3):S2.

    Article  PubMed  CAS  Google Scholar 

  19. Pardridge WM. Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 2002;1:131–9.

    Article  PubMed  CAS  Google Scholar 

  20. Gabathuler R. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 2010;37:48–57.

    Article  PubMed  CAS  Google Scholar 

  21. Poduslo JF, Curran GL, Berg CT. Macromolecular permeability across the blood-nerve and blood–brain barriers. Proc Natl Acad Sci U S A 1994;91:5705–9.

    Article  PubMed  CAS  Google Scholar 

  22. Felgenhauer K. Protein size and cerebrospinal fluid composition. Klin Wochenschr 1974;52:1158–64.

    Article  PubMed  CAS  Google Scholar 

  23. Vincent A, Bien CG, Irani SR, Waters P. Autoantibodies associated with diseases of the CNS: new developments and future challenges. Lancet Neurol 2011;10:759–72.

    Article  PubMed  CAS  Google Scholar 

  24. Lancaster E, Dalmau J. Neuronal autoantigens–pathogenesis, associated disorders and antibody testing. Nat Rev Neurol 2012;8:380–90.

    Article  PubMed  CAS  Google Scholar 

  25. Banks WA, Terrell B, Farr SA, Robinson SM, Nonaka N, Morley JE. Passage of amyloid beta protein antibody across the blood–brain barrier in a mouse model of Alzheimer's disease. Peptides 2002;23:2223–6.

    Article  PubMed  CAS  Google Scholar 

  26. Banks WA, Farr SA, Morley JE, Wolf KM, Geylis V, Steinitz M. Anti-amyloid beta protein antibody passage across the blood–brain barrier in the SAMP8 mouse model of Alzheimer's disease: an age-related selective uptake with reversal of learning impairment. Exp Neurol 2007;206:248–56.

    Article  PubMed  CAS  Google Scholar 

  27. Wang A, Das P, Switzer 3rd RC, Golde TE, Jankowsky JL. Robust amyloid clearance in a mouse model of Alzheimer's disease provides novel insights into the mechanism of amyloid-beta immunotherapy. J Neurosci Off J Soc Neurosci 2011;31:4124–36.

    Article  CAS  Google Scholar 

  28. Yamada K, Yabuki C, Seubert P, Schenk D, Hori Y, Ohtsuki S, et al. Abeta immunotherapy: intracerebral sequestration of Abeta by an anti-Abeta monoclonal antibody 266 with high affinity to soluble Abeta. J Neurosci Off J Soc Neurosci 2009;29:11393–8.

    Article  CAS  Google Scholar 

  29. Atwal JK, Chen Y, Chiu C, Mortensen DL, Meilandt WJ, Liu Y, et al. A therapeutic antibody targeting BACE1 inhibits amyloid-beta production in vivo. Sci Transl Med 2011;3:84ra43.

    Article  PubMed  CAS  Google Scholar 

  30. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000;6:916–9.

    Article  PubMed  CAS  Google Scholar 

  31. Bard F, Fox M, Friedrich S, Seubert P, Schenk D, Kinney GG, et al. Sustained levels of antibodies against Abeta in amyloid-rich regions of the CNS following intravenous dosing in human APP transgenic mice. Exp Neurol 2012;238:38–43.

    Article  PubMed  CAS  Google Scholar 

  32. Vassar R, Kovacs DM, Yan R, Wong PC. The beta-secretase enzyme BACE in health and Alzheimer's disease: regulation, cell biology, function, and therapeutic potential. J Neurosci Off J Soc Neurosci 2009;29:12787–94.

    Article  CAS  Google Scholar 

  33. Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 2011;10:698–712.

    Article  PubMed  CAS  Google Scholar 

  34. Nitsch RM, Hock C. Targeting beta-amyloid pathology in Alzheimer's disease with Abeta immunotherapy. Neurother J Am Soc Exp NeuroTher 2008;5:415–20.

    Article  CAS  Google Scholar 

  35. Holtzman DM, Morris JC, Goate AM. Alzheimer's disease: the challenge of the second century. Sci Transl Med 2011;3:77sr1.

    Article  PubMed  CAS  Google Scholar 

  36. Bertram L, Lill CM, Tanzi RE. The genetics of Alzheimer disease: back to the future. Neuron 2010;68:270–81.

    Article  PubMed  CAS  Google Scholar 

  37. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 2012;488:96–9.

    Article  PubMed  CAS  Google Scholar 

  38. Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell 2012;148:1204–22.

    Article  PubMed  CAS  Google Scholar 

  39. Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature 2009;461:916–22.

    Article  PubMed  CAS  Google Scholar 

  40. Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, et al. Trans-synaptic spread of tau pathology in vivo. PLoS One 2012;7:e31302.

    Article  PubMed  CAS  Google Scholar 

  41. de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, et al. Propagation of tau pathology in a model of early Alzheimer's disease. Neuron 2012;73:685–97.

    Article  PubMed  CAS  Google Scholar 

  42. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 2009;11:909–13.

    Article  PubMed  CAS  Google Scholar 

  43. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, et al. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999;286:735–41.

    Article  PubMed  CAS  Google Scholar 

  44. Roberds SL, Anderson J, Basi G, Bienkowski MJ, Branstetter DG, Chen KS, et al. BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: implications for Alzheimer's disease therapeutics. Hum Mol Genet 2001;10:1317–24.

    Article  PubMed  CAS  Google Scholar 

  45. Ghosh AK, Gemma S, Tang J. beta-Secretase as a therapeutic target for Alzheimer's disease. Neurother J Am Soc Exp NeuroTher 2008;5:399–408.

    Article  CAS  Google Scholar 

  46. Ghosh AK, Brindisi M, Tang J. Developing beta-secretase inhibitors for treatment of Alzheimer's disease. J Neurochem 2012;120(Suppl 1):71–83.

    Article  PubMed  CAS  Google Scholar 

  47. May PC, Dean RA, Lowe SL, Martenyi F, Sheehan SM, Boggs LN, et al. Robust central reduction of amyloid-beta in humans with an orally available, non-peptidic beta-secretase inhibitor. J Neurosci Off J Soc Neurosci 2011;31:16507–16.

    Article  CAS  Google Scholar 

  48. Koike M, Shibata M, Ohsawa Y, Nakanishi H, Koga T, Kametaka S, et al. Involvement of two different cell death pathways in retinal atrophy of cathepsin D-deficient mice. Mol Cell Neurosci 2003;22:146–61.

    Article  PubMed  CAS  Google Scholar 

  49. Koike M, Nakanishi H, Saftig P, Ezaki J, Isahara K, Ohsawa Y, et al. Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci Off J Soc Neurosci 2000;20:6898–906.

    CAS  Google Scholar 

  50. Follo C, Ozzano M, Mugoni V, Castino R, Santoro M, Isidoro C. Knock-down of cathepsin D affects the retinal pigment epithelium, impairs swim-bladder ontogenesis and causes premature death in zebrafish. PLoS One 2011;6:e21908.

    Article  PubMed  CAS  Google Scholar 

  51. Cai J, Qi X, Kociok N, Skosyrski S, Emilio A, Ruan Q, et al. beta-Secretase (BACE1) inhibition causes retinal pathology by vascular dysregulation and accumulation of age pigment. EMBO Mol Med 2012;4:980–91.

    Article  PubMed  CAS  Google Scholar 

  52. Hitt B, Riordan SM, Kukreja L, Eimer WA, Rajapaksha TW, Vassar R. Beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)-deficient mice exhibit a close homolog of L1 (CHL1) loss-of-function phenotype involving axon guidance defects. J Biol Chem 2012;287:38408–25.

    Article  PubMed  CAS  Google Scholar 

  53. Rajapaksha TW, Eimer WA, Bozza TC, Vassar R. The Alzheimer's beta-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb. Mol Neurodegener 2011;6:88.

    Article  PubMed  CAS  Google Scholar 

  54. Zhou L, Chavez-Gutierrez L, Bockstael K, Sannerud R, Annaert W, May PC, et al. Inhibition of beta-secretase in vivo via antibody binding to unique loops (D and F) of BACE1. J Biol Chem 2011;286:8677–87.

    Article  PubMed  CAS  Google Scholar 

  55. Delrieu J, Ousset PJ, Caillaud C, Vellas B. 'Clinical trials in Alzheimer's disease': immunotherapy approaches. J Neurochem 2012;120(Suppl 1):186–93.

    Article  PubMed  CAS  Google Scholar 

  56. Lemere CA, Masliah E. Can Alzheimer disease be prevented by amyloid-beta immunotherapy? Nat Rev Neurol 2010;6:108–19.

    Article  PubMed  CAS  Google Scholar 

  57. Valera E, Masliah E. Immunotherapy for neurodegenerative diseases: focus on alpha-synucleinopathies. Pharmacol Ther 2013. doi:10.1016/j.pharmthera.2013.01.013.

  58. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999;400:173–7.

    Article  PubMed  CAS  Google Scholar 

  59. Adolfsson O, Pihlgren M, Toni N, Varisco Y, Buccarello AL, Antoniello K, et al. An effector-reduced anti-beta-amyloid (Abeta) antibody with unique abeta binding properties promotes neuroprotection and glial engulfment of Abeta. J Neurosci Off J Soc Neurosci 2012;32:9677–89.

    Article  CAS  Google Scholar 

  60. Farlow M, Arnold SE, van Dyck CH, Aisen PS, Snider BJ, Porsteinsson AP, et al. Safety and biomarker effects of solanezumab in patients with Alzheimer's disease. Alzheimers Dement J Alzheimers Assoc 2012;8:261–71.

    Article  CAS  Google Scholar 

  61. Ostrowitzki S, Deptula D, Thurfjell L, Barkhof F, Bohrmann B, Brooks DJ, et al. Mechanism of amyloid removal in patients with Alzheimer disease treated with gantenerumab. Arch Neurol 2012;69:198–207.

    Article  PubMed  Google Scholar 

  62. Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, et al. 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 2010;9:363–72.

    Article  PubMed  CAS  Google Scholar 

  63. DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM. Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer's disease. Science 2002;295:2264–7.

    Article  PubMed  CAS  Google Scholar 

  64. Sperling RA, Jack Jr CR, Black SE, Frosch MP, Greenberg SM, Hyman BT, et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer's Association Research Roundtable Workgroup. Alzheimers Dement J Alzheimers Assoc 2011;7:367–85.

    Article  Google Scholar 

  65. Demattos RB, Lu J, Tang Y, Racke MM, Delong CA, Tzaferis JA, et al. A plaque-specific antibody clears existing beta-amyloid plaques in Alzheimer's disease mice. Neuron 2012;76:908–20.

    Article  PubMed  CAS  Google Scholar 

  66. Golde TE, Schneider LS, Koo EH. Anti-abeta therapeutics in Alzheimer's disease: the need for a paradigm shift. Neuron 2011;69:203–13.

    Article  PubMed  CAS  Google Scholar 

  67. Sperling RA, Jack Jr CR, Aisen PS. Testing the right target and right drug at the right stage. Sci Transl Med 2011;3:111cm33.

    Article  PubMed  Google Scholar 

  68. Bateman RJ, Aisen PS, De Strooper B, Fox NC, Lemere CA, Ringman JM, et al. Autosomal-dominant Alzheimer's disease: a review and proposal for the prevention of Alzheimer's disease. Alzheimers Res Ther 2011;3:1.

    Article  PubMed  Google Scholar 

  69. Selkoe DJ. Preventing Alzheimer's disease. Science 2012;337:1488–92.

    Article  PubMed  CAS  Google Scholar 

  70. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med 2012;367:795–804.

    Article  PubMed  CAS  Google Scholar 

  71. Fleisher AS, Chen K, Quiroz YT, Jakimovich LJ, Gomez MG, Langois CM, et al. Florbetapir PET analysis of amyloid-β deposition in the presenilin 1 E280A autosomal dominant Alzheimer's disease kindred: a cross-sectional study. Lancet Neurol 2012;11:1057–65.

    Article  PubMed  CAS  Google Scholar 

  72. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991;82:239–59.

    Article  PubMed  CAS  Google Scholar 

  73. Yamada K, Cirrito JR, Stewart FR, Jiang H, Finn MB, Holmes BB, et al. In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci Off J Soc Neurosci 2011;31:13110–7.

    Article  CAS  Google Scholar 

  74. Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci Off J Soc Neurosci 2007;27:9115–29.

    Article  CAS  Google Scholar 

  75. Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci Off J Soc Neurosci 2010;30:16559–66.

    Article  CAS  Google Scholar 

  76. Boimel M, Grigoriadis N, Lourbopoulos A, Haber E, Abramsky O, Rosenmann H. Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp Neurol 2010;224:472–85.

    Article  PubMed  CAS  Google Scholar 

  77. Bi M, Ittner A, Ke YD, Gotz J, Ittner LM. Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS One 2011;6:e26860.

    Article  PubMed  CAS  Google Scholar 

  78. Chai X, Wu S, Murray TK, Kinley R, Cella CV, Sims H, et al. Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression. J Biol Chem 2011;286:34457–67.

    Article  PubMed  CAS  Google Scholar 

  79. Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem 2011;118:658–67.

    Article  PubMed  CAS  Google Scholar 

  80. Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI. Trans-cellular propagation of Tau aggregation by fibrillar species. J Biol Chem 2012;287:19440–51.

    Article  PubMed  CAS  Google Scholar 

  81. Goedert M, Spillantini MG, Del Tredici K, Braak H. 100 years of Lewy pathology. Nat Rev Neurol 2012. doi:10.1038/nrneurol.2012.242

  82. Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, et al. Effects of alpha-synuclein immunization in a mouse model of Parkinson's disease. Neuron 2005;46:857–68.

    Article  PubMed  CAS  Google Scholar 

  83. Masliah E, Rockenstein E, Mante M, Crews L, Spencer B, Adame A, et al. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One 2011;6:e19338.

    Article  PubMed  CAS  Google Scholar 

  84. Lee HJ, Patel S, Lee SJ. Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci Off J Soc Neurosci 2005;25:6016–24.

    Article  CAS  Google Scholar 

  85. Bae EJ, Lee HJ, Rockenstein E, Ho DH, Park EB, Yang NY, et al. Antibody-aided clearance of extracellular alpha-synuclein prevents cell-to-cell aggregate transmission. J Neurosci Off J Soc Neurosci 2012;32:13454–69.

    Article  CAS  Google Scholar 

  86. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A 2009;106:13010–5.

    Article  PubMed  CAS  Google Scholar 

  87. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat Med 2008;14:504–6.

    Article  PubMed  CAS  Google Scholar 

  88. Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat Med 2008;14:501–3.

    Article  PubMed  CAS  Google Scholar 

  89. Miller T. DNA vaccination against mutant huntingtin ameliorates the HDR6/2 diabetic phenotype. Mol Ther 2003;7:572–9.

    Article  PubMed  CAS  Google Scholar 

  90. Takeuchi S, Fujiwara N, Ido A, Oono M, Takeuchi Y, Tateno M, et al. Induction of protective immunity by vaccination with wild-type apo superoxide dismutase 1 in mutant SOD1 transgenic mice. J Neuropathol Exp Neurol 2010;69:1044–56.

    Article  PubMed  CAS  Google Scholar 

  91. Urushitani M, Ezzi SA, Julien JP. Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2007;104:2495–500.

    Article  PubMed  CAS  Google Scholar 

  92. Alexandrenne C, Hanoux V, Dkhissi F, Boquet D, Couraud JY, Wijkhuisen A. Curative properties of antibodies against prion protein: a comparative in vitro study of monovalent fragments and divalent antibodies. J Neuroimmunol 2009;209:50–6.

    Article  PubMed  CAS  Google Scholar 

  93. Sigurdsson EM, Brown DR, Daniels M, Kascsak RJ, Kascsak R, Carp R, et al. Immunization delays the onset of prion disease in mice. Am J Pathol 2002;161:13–7.

    Article  PubMed  CAS  Google Scholar 

  94. Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY. Transferrin receptor on endothelium of brain capillaries. Nature 1984;312:162–3.

    Article  PubMed  CAS  Google Scholar 

  95. Duffy KR, Pardridge WM. Blood–brain barrier transcytosis of insulin in developing rabbits. Brain Res 1987;420:32–8.

    Article  PubMed  CAS  Google Scholar 

  96. Golden PL, Maccagnan TJ, Pardridge WM. Human blood–brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. J Clin Investig 1997;99:14–8.

    Article  PubMed  CAS  Google Scholar 

  97. Triguero D, Buciak JB, Yang J, Pardridge WM. Blood–brain barrier transport of cationized immunoglobulin G: enhanced delivery compared to native protein. Proc Natl Acad Sci U S A 1989;86:4761–5.

    Article  PubMed  CAS  Google Scholar 

  98. Poduslo JF, Curran GL. Polyamine modification increases the permeability of proteins at the blood-nerve and blood–brain barriers. J Neurochem 1996;66:1599–609.

    Article  PubMed  CAS  Google Scholar 

  99. Herve F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. AAPS J 2008;10:455–72.

    Article  PubMed  Google Scholar 

  100. Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Target 2004;12:635–41.

    Article  PubMed  CAS  Google Scholar 

  101. Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood–brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res 2007;24:1745–58.

    Article  PubMed  CAS  Google Scholar 

  102. Cundy KC, Branch R, Chernov-Rogan T, Dias T, Estrada T, Hold K, et al. XP13512 [(+/−)-1-([(alpha-isobutanoyloxyethoxy)carbonyl] aminomethyl)-1-cyclohexane acetic acid], a novel gabapentin prodrug: I. Design, synthesis, enzymatic conversion to gabapentin, and transport by intestinal solute transporters. J Pharmacol Exp Ther 2004;311:315–23.

    Article  PubMed  CAS  Google Scholar 

  103. Gomes P, Soares-da-Silva P. L-DOPA transport properties in an immortalised cell line of rat capillary cerebral endothelial cells, RBE 4. Brain Res 1999;829:143–50.

    Article  PubMed  CAS  Google Scholar 

  104. Pardridge WM, Eisenberg J, Yang J. Human blood–brain barrier transferrin receptor. Metab Clin Exp 1987;36:892–5.

    Article  PubMed  CAS  Google Scholar 

  105. Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol 2000;20:77–95.

    Article  PubMed  CAS  Google Scholar 

  106. Risau W, Hallmann R, Albrecht U. Differentiation-dependent expression of proteins in brain endothelium during development of the blood–brain barrier. Dev Biol 1986;117:537–45.

    Article  PubMed  CAS  Google Scholar 

  107. Giometto B, Bozza F, Argentiero V, Gallo P, Pagni S, Piccinno MG, et al. Transferrin receptors in rat central nervous system. An immunocytochemical study. J Neurol Sci 1990;98:81–90.

    Article  PubMed  CAS  Google Scholar 

  108. Oh TH, Markelonis GJ, Royal GM, Bregman BS. Immunocytochemical distribution of transferrin and its receptor in the developing chicken nervous system. Brain Res 1986;395:207–20.

    Article  PubMed  CAS  Google Scholar 

  109. Ajioka RS, Kaplan J. Intracellular pools of transferrin receptors result from constitutive internalization of unoccupied receptors. Proc Natl Acad Sci U S A 1986;83:6445–9.

    Article  PubMed  CAS  Google Scholar 

  110. Maxfield FR, McGraw TE. Endocytic recycling. Nat Rev Mol Cell Biol 2004;5:121–32.

    Article  PubMed  CAS  Google Scholar 

  111. Shin SU, Friden P, Moran M, Olson T, Kang YS, Pardridge WM, et al. Transferrin-antibody fusion proteins are effective in brain targeting. Proc Natl Acad Sci U S A 1995;92:2820–4.

    Article  PubMed  CAS  Google Scholar 

  112. Mishra V, Mahor S, Rawat A, Gupta PN, Dubey P, Khatri K, et al. Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 2006;14:45–53.

    Article  PubMed  CAS  Google Scholar 

  113. Friden PM, Walus LR, Musso GF, Taylor MA, Malfroy B, Starzyk RM. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood–brain barrier. Proc Natl Acad Sci U S A 1991;88:4771–5.

    Article  PubMed  CAS  Google Scholar 

  114. Pardridge WM, Buciak JL, Friden PM. Selective transport of an anti-transferrin receptor antibody through the blood–brain barrier in vivo. J Pharmacol Exp Ther 1991;259:66–70.

    PubMed  CAS  Google Scholar 

  115. Lee HJ, Engelhardt B, Lesley J, Bickel U, Pardridge WM. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood–brain barrier in mouse. J Pharmacol Exp Ther 2000;292:1048–52.

    PubMed  CAS  Google Scholar 

  116. Zhang Y, Pardridge WM. Conjugation of brain-derived neurotrophic factor to a blood–brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin. Brain Res 2001;889:49–56.

    Article  PubMed  CAS  Google Scholar 

  117. Friden PM, Walus LR, Watson P, Doctrow SR, Kozarich JW, Backman C, et al. Blood–brain barrier penetration and in vivo activity of an NGF conjugate. Science 1993;259:373–7.

    Article  PubMed  CAS  Google Scholar 

  118. Kordower JH, Charles V, Bayer R, Bartus RT, Putney S, Walus LR, et al. Intravenous administration of a transferrin receptor antibody-nerve growth factor conjugate prevents the degeneration of cholinergic striatal neurons in a model of Huntington disease. Proc Natl Acad Sci U S A 1994;91:9077–80.

    Article  PubMed  CAS  Google Scholar 

  119. Kissel K, Hamm S, Schulz M, Vecchi A, Garlanda C, Engelhardt B. Immunohistochemical localization of the murine transferrin receptor (TfR) on blood-tissue barriers using a novel anti-TfR monoclonal antibody. Histochem Cell Biol 1998;110:63–72.

    Article  PubMed  CAS  Google Scholar 

  120. Zhou QH, Fu A, Boado RJ, Hui EK, Lu JZ, Pardridge WM. Receptor-mediated abeta amyloid antibody targeting to Alzheimer's disease mouse brain. Mol Pharm 2011;8:280–5.

    Article  PubMed  CAS  Google Scholar 

  121. Moos T, Morgan EH. Restricted transport of anti-transferrin receptor antibody (OX26) through the blood–brain barrier in the rat. J Neurochem 2001;79:119–29.

    Article  PubMed  CAS  Google Scholar 

  122. Gatter KC, Brown G, Trowbridge IS, Woolston RE, Mason DY. Transferrin receptors in human tissues: their distribution and possible clinical relevance. J Clin Pathol 1983;36:539–45.

    Article  PubMed  CAS  Google Scholar 

  123. Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med 2011;3:84ra44.

    Article  PubMed  CAS  Google Scholar 

  124. McClain DA, Maegawa H, Lee J, Dull TJ, Ulrich A, Olefsky JM. A mutant insulin receptor with defective tyrosine kinase displays no biologic activity and does not undergo endocytosis. J Biol Chem 1987;262:14663–71.

    PubMed  CAS  Google Scholar 

  125. Pardridge WM, Kang YS, Buciak JL, Yang J. Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood–brain barrier in vivo in the primate. Pharm Res 1995;12:807–16.

    Article  PubMed  CAS  Google Scholar 

  126. Boado RJ, Zhang Y, Zhang Y, Pardridge WM. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood–brain barrier. Biotechnol Bioeng 2007;96:381–91.

    Article  PubMed  CAS  Google Scholar 

  127. Wu D, Yang J, Pardridge WM. Drug targeting of a peptide radiopharmaceutical through the primate blood–brain barrier in vivo with a monoclonal antibody to the human insulin receptor. J Clin Investig 1997;100:1804–12.

    Article  PubMed  CAS  Google Scholar 

  128. Boado RJ, Zhang Y, Zhang Y, Xia CF, Pardridge WM. Fusion antibody for Alzheimer's disease with bidirectional transport across the blood–brain barrier and abeta fibril disaggregation. Bioconjugate Chem 2007;18:447–55.

    Article  CAS  Google Scholar 

  129. Zhang Y, Schlachetzki F, Li JY, Boado RJ, Pardridge WM. Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. Mol Vis 2003;9:465–72.

    PubMed  CAS  Google Scholar 

  130. Boado RJ, Zhang Y, Zhang Y, Wang Y, Pardridge WM. GDNF fusion protein for targeted-drug delivery across the human blood–brain barrier. Biotechnol Bioeng 2008;100:387–96.

    Article  PubMed  CAS  Google Scholar 

  131. Bu G, Geuze HJ, Strous GJ, Schwartz AL. 39 kDa receptor-associated protein is an ER resident protein and molecular chaperone for LDL receptor-related protein. EMBO J 1995;14:2269–80.

    PubMed  CAS  Google Scholar 

  132. Liu Q, Zerbinatti CV, Zhang J, Hoe HS, Wang B, Cole SL, et al. Amyloid precursor protein regulates brain apolipoprotein E and cholesterol metabolism through lipoprotein receptor LRP1. Neuron 2007;56:66–78.

    Article  PubMed  CAS  Google Scholar 

  133. Gaillard PJ, Visser CC, de Boer AG. Targeted delivery across the blood–brain barrier. Expert Opin Drug Deliv 2005;2:299–309.

    Article  PubMed  CAS  Google Scholar 

  134. Karkan D, Pfeifer C, Vitalis TZ, Arthur G, Ujiie M, Chen Q, et al. A unique carrier for delivery of therapeutic compounds beyond the blood–brain barrier. PLoS One 2008;3:e2469.

    Article  PubMed  CAS  Google Scholar 

  135. Bertrand Y, Currie JC, Poirier J, Demeule M, Abulrob A, Fatehi D, et al. Influence of glioma tumour microenvironment on the transport of ANG1005 via low-density lipoprotein receptor-related protein 1. Br J Cancer 2011;105:1697–707.

    Article  PubMed  CAS  Google Scholar 

  136. Tooyama I, Kawamata T, Akiyama H, Kimura H, Moestrup SK, Gliemann J, et al. Subcellular localization of the low density lipoprotein receptor-related protein (alpha 2-macroglobulin receptor) in human brain. Brain Res 1995;691:235–8.

    Article  PubMed  CAS  Google Scholar 

  137. Lillis AP, Mikhailenko I, Strickland DK. Beyond endocytosis: LRP function in cell migration, proliferation and vascular permeability. J Thromb Haemost 2005;3:1884–93.

    Article  PubMed  CAS  Google Scholar 

  138. Muruganandam A, Tanha J, Narang S, Stanimirovic D. Selection of phage-displayed llama single-domain antibodies that transmigrate across human blood–brain barrier endothelium. FASEB J Off Publ Fed Am Soc Exp Biol 2002;16:240–2.

    CAS  Google Scholar 

  139. Tanha J, Muruganandam A, Stanimirovic D. Phage display technology for identifying specific antigens on brain endothelial cells. Methods Mol Med 2003;89:435–49.

    PubMed  CAS  Google Scholar 

  140. Abulrob A, Sprong H, Van Bergen en Henegouwen P, Stanimirovic D. The blood–brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem 2005;95:1201–14.

    Article  PubMed  CAS  Google Scholar 

  141. Ohshima-Hosoyama S, Simmons HA, Goecks N, Joers V, Swanson CR, Bondarenko V, et al. A monoclonal antibody-GDNF fusion protein is not neuroprotective and is associated with proliferative pancreatic lesions in parkinsonian monkeys. PLoS One 2012;7:e39036.

    Article  PubMed  CAS  Google Scholar 

Download references

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan J. Watts.

Electronic Supplementary Material

ESM 1

(PDF 510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y.J., Watts, R.J. Developing Therapeutic Antibodies for Neurodegenerative Disease. Neurotherapeutics 10, 459–472 (2013). https://doi.org/10.1007/s13311-013-0187-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-013-0187-4

Keywords

Navigation