Skip to main content

Advertisement

Log in

Additional prognostic factors in right colon cancer staging

  • Original Article
  • Published:
Updates in Surgery Aims and scope Submit manuscript

Abstract

Based on the theory—which is now acknowledged—of a clinical difference between proximal and distal colon cancer and on the results of recent genetic and microbiological studies, a minority of authors have assumed that also in the sphere of right-sided colon cancer, tumors at three different locations, namely, the cecum and ascending and transverse colon, can be considered to be biologically different. These studies have provided the basis for a retrospective study carried out on 50 patients admitted to our department from 1996 to 2008 for tumor pathology of the right colon. The tumor was considered to be a unified biological entity and assessed in relation to the three above-mentioned locations. The results verify that the aggressive of the tumor increases from the cecum to the transverse, with a higher percentage of cecal tumors being in I stage, more tumors in the ascending colon being in II stage, and more transverse tumors, with the largest percentage of N+ and M+, in stages III and IV. This difference in biological behavior for the three tumor locations has been also found in terms of sensitiveness, both pre- and post-operation, of tumor markers CEA, TPA, and CA19-9. Clinical data revealed a binary relationship between the transverse, cecum, and ascending tumors, which ultimately affects patient mortality, which increases in a directly proportional way from the cecum to the transverse—in the case of a tumor at one of these locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Younes H, Coudray C, Bellanger J, Demigne C, Rayssiguier Y, Remesy C (2001) Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. Br J Nutr 86:479–485

    Article  PubMed  CAS  Google Scholar 

  2. Roberfroid MB, Bornet F, Bouley C, Cummings JH (1995) Colonic microflora: nutrition and health: summary and conclusions of an International Life Sciences Institute (ILSI) (Europe) workshop held in Barcelona, Spain. Nutr Rev 53:127–130

    Article  PubMed  CAS  Google Scholar 

  3. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    Article  PubMed  CAS  Google Scholar 

  4. Fallingborg J (1999) Intraluminal pH of the human gastrointestinal tract. Dan Med Bull 46:183–196

    PubMed  CAS  Google Scholar 

  5. Cummings JH, Englyst HN (1987) Fermentation in the human large intestine and the available substrates. Am J Clin Nutr 45(suppl):1243–1255

    PubMed  CAS  Google Scholar 

  6. Silvester KR, Englyst HN, Cummings JH (1995) Ileal recovery of starch from whole diets containing resistant starch measured in vitro and fermentation of ileal effluent. Am J Clin Nutr 62:403–411

    PubMed  CAS  Google Scholar 

  7. Rescigno M (2008) The pathogenic role of intestinal flora in IBD and colon cancer. Curr Drug Targets 9(5):395–403

    Article  PubMed  CAS  Google Scholar 

  8. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 360:512–519

    Article  Google Scholar 

  9. Hill MJ (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6[Suppl]:S43–S45

    Article  PubMed  Google Scholar 

  10. Alam M, Midtvedt T, Uribe A (1994) Differential cell kinetics in the ileum and colon of germfree rats. Scand J Gastroenterol 29:445–451

    Article  PubMed  CAS  Google Scholar 

  11. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884

    Article  PubMed  CAS  Google Scholar 

  12. Gordon JI, Hooper LV, McNevin MS, Wong M, Bry L (1997) Epithelial cell growth, differentiation. III. Promoting diversity in the intestine: conversations between the microflora, epithelium, and diffuse GALT. Am J Physiol 273:G565–G570

    PubMed  CAS  Google Scholar 

  13. Moore WE, Moore LH (1995) Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol 61:3202–3207

    PubMed  CAS  Google Scholar 

  14. Luperchio SA, Schauer DB (2001) Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia. Microbes Infect 3(4):333–340

    Article  PubMed  CAS  Google Scholar 

  15. Montaner B, Perez-Tomas R (2001) Prodigiosin-induced apoptosis in human colon cancer cells. Departement de Biologia Cellular I Anatomia Patologica, Universitat de Barcelona, L’Hospitalet. Spain Life Sci 68(17):2025–2036

    CAS  Google Scholar 

  16. Keighly MRB, Williams NS (2000) Surgery of the anus, rectum and colon by WB Saunders, London

  17. Czerucka D, Dahan S, Mograbi B, Rossi B, Rampal P (2000) Saccaromyces boulardii preserves the barrier function and modulates the signal transduction patway induced in enteropathogenic Escherichia coli-infected T84 cells. Infect Immun 68(10):5998–6004

    Article  PubMed  CAS  Google Scholar 

  18. Glebov OK, Rodriguez LM, Nakahara K, Jenkins J, Cliatt J, Humbyrd CJ et al (2003) Distinguishing right from left colon by pattern of gene expression. Cancer Epidemiol Biomarkers Prev 12:755–762

    PubMed  CAS  Google Scholar 

  19. Finegold SM, Sutter VL (1978) Fecal flora in different populations, with special reference to diet. Am J Clin Nutr 31:116–122

    Google Scholar 

  20. Moore WEC, Cato EP, Holdeman LV (1978) Some current concepts in intestinal bacteriology. Am J Clin Nutr 31:33–42

    Google Scholar 

  21. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133

    Article  PubMed  CAS  Google Scholar 

  22. Kautiainen A, Midtvedt T, Tornquist M (1993) Intestinal bacteria and endogenous production of malonaldehyde and alkylators in mice. Carcinogenesis 14(12):2633–2636

    Article  PubMed  CAS  Google Scholar 

  23. Bufill JA (1990) Colorectal cancer: evidence for distinct genetic categories based on proximal or distal tumor location. Ann Intern Med 113:779–788

    PubMed  CAS  Google Scholar 

  24. Bonithon-Kopp C, Benchamiche AM (1999) Are there several colorectal cancers? Epidemiological data. Eur J Cancer Prev 8:S3–S12

    Article  PubMed  Google Scholar 

  25. Kim H, Jen J, Vogelstein B, Hamilton SR (1994) Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol 145:148–156

    PubMed  CAS  Google Scholar 

  26. Forster S, Sattler H-P, Hack M, Romanakis K, Rohde V, Seitz G, Wullich B (1998) Microsatellite instability in sporadic carcinomas of the proximal colon: association with diploid DNA content, negative protein expression of p53, and distinct histomorphologic features. Surgery 123:13–18

    Article  PubMed  CAS  Google Scholar 

  27. Pocard M, Salmon RJ, Muleris M, Remvikos Y, Bara J, Dutrillaoux B, Poupon MF (1995) Deux colons—deux cancers? Adenocarcinomes coliques proximal ou distal: arguments en faveur d’une cancerogenese distincte. Bull Cancer 82:10–21

    PubMed  CAS  Google Scholar 

  28. Benedix F, Meyer F, Kube R, Gastinger I, Lippert H (2010) Right- and left-sided colonic cancer––different tumour entities. Zentralbl Chir 135(4):312–317

    Article  PubMed  CAS  Google Scholar 

  29. Harris RM, Picton R, Singh S, Waring RH (2000) Activity of phenol-sulfotransferases in the human gastrointestinal tract. Life Sci 67:2051–2057

    Article  PubMed  CAS  Google Scholar 

  30. Edhemovic I, Snoj M, Kljun A, Golouh R (2000) Immunohistochemical localization of group II phospholipase A2 in the tumors and mucosa of the colon and rectum. Eur J Surg Oncol 27:545–548

    Article  Google Scholar 

  31. Hormi K, Cadiot G, Kermorgant S, Dessirier V, Le Romancer M, Lewin MJM, Mignon M, Lehy T (2000) Transforming growth factor and epidermal growth factor receptor in colonic mucosa in active and inactive inflammatory bowel disease. Growth Factors 18:79–91

    Article  PubMed  CAS  Google Scholar 

  32. Messa C, Russo F, Caruso MG, Di Leo A (1998) EGF, TGF-, and EGF-R in human colorectal adenocarcinoma. Acta Oncol 37:285–289

    Google Scholar 

  33. Liu LU, Holt PR, Krivosheyev V, Moss SF (1999) Human right and left colon differ in epithelial cell apoptosis and in expression of Bak, a pro-apoptotic Bcl-2 homologue. Gut 45:45–50

    Article  PubMed  CAS  Google Scholar 

  34. Fric P, Sovova V, Sloncova E, Lojda Z, Jirasek A, Cermak J (2000) Different expression of some molecular markers in sporadic cancer of the left and right colon. Eur J Cancer Prev 9:265–268

    Article  PubMed  CAS  Google Scholar 

  35. Koenders PG, Peters WHM, Wobbes Th, Beex LVAM, Magengast FM, Th J Benraad (1992) Epidermal growth factor receptor levels are lower in carcinomatous than in normal colorectal tissue. Br J Cancer 65:189–192

    Article  PubMed  CAS  Google Scholar 

  36. Jeffrey SS, Fero MJ, Borresen-Dale AL, Botstein D (2002) Expression array technology in the diagnosis and treatment of breast cancer. Mol Interv 2:101–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Parmeggiani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parmeggiani, D., Avenia, N., Gubitosi, A. et al. Additional prognostic factors in right colon cancer staging. Updates Surg 63, 155–161 (2011). https://doi.org/10.1007/s13304-011-0078-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13304-011-0078-3

Keywords

Navigation