Skip to main content

Advertisement

Log in

Transcription factor HIF1A: downstream targets, associated pathways, polymorphic hypoxia response element (HRE) sites, and initiative for standardization of reporting in scientific literature

  • Original Article
  • Published:
Tumor Biology

Abstract

Hypoxia-inducible factor-1α (HIF-1α) has crucial role in adapting cells to hypoxia through expression regulation of many genes. Identification of HIF-1α target genes (HIF-1α-TGs) is important for understanding the adapting mechanism. The aim of the present study was to collect known HIF-1α-TGs and identify their associated pathways. Targets and associated genomics data were retrieved using PubMed, WoS (http://apps.webofknowledge.com/), HGNC (http://www.genenames.org/), NCBI (http://www.ncbi.nlm.nih.gov/), Ensemblv.84 (http://www.ensembl.org/index.html), DAVID Bioinformatics Resources (https://david.ncifcrf.gov/), and Disease Ontology database (http://disease-ontology.org/). From 51 papers, we collected 98 HIF-1α TGs found to be associated with 20 pathways, including metabolism of carbohydrates and pathways in cancer. Reanalysis of genomic coordinates of published HREs (hypoxia response elements) revealed six polymorphisms within HRE sites (HRE-SNPs): ABCG2, ACE, CA9, and CP. Due to large heterogeneity of results presentation in scientific literature, we also propose a first step towards reporting standardization of HIF-1α-target interactions consisting of ten relevant data types. Suggested minimal checklist for reporting will enable faster development of a complete catalog of HIF-1α-TGs, data sharing, bioinformatics analyses, and setting novel more targeted hypotheses. The proposed format for data standardization is not yet complete but presents a baseline for further optimization of the protocol with additional details, for example, regarding the experimental validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Balazsi G, van Oudenaarden A, Collins JJ. Cellular decision making and biological noise: from microbes to mammals. Cell. United States: Elsevier, 2011. vol 144, pp 910–925.

  2. Latchman DS. Transcription factors as potential targets for therapeutic drugs. Curr Pharm Biotechnol. 2000;1:57–61.

    Article  CAS  PubMed  Google Scholar 

  3. Georges AB, Benayoun BA, Caburet S, Veitia RA. Generic binding sites, generic dna-binding domains: where does specific promoter recognition come from? Faseb J. 2010; 24, pp 346–356.

  4. Wang J, Lu J, Gu G, Liu Y. In vitro dna-binding profile of transcription factors: methods and new insights. J Endocrinol England, 2011 Society for Endocrinology. 2011;210:15–27.

    CAS  Google Scholar 

  5. Farnham PJ. Insights from genomic profiling of transcription factors. Nat Rev Genet England. 2009;10:605–16.

    Article  CAS  Google Scholar 

  6. Pan Y, Tsai CJ, Ma B, Nussinov R. Mechanisms of transcription factor selectivity. Trends Genet England. 2010;26:75–83.

    Article  CAS  Google Scholar 

  7. Kim TM, Park PJ. Advances in analysis of transcriptional regulatory networks. Wiley Interdiscip Rev Syst Biol Med. 2011;3:21–35.

    Article  CAS  PubMed  Google Scholar 

  8. Ke Q, Costa M. Hypoxia-inducible factor-1 (hif-1). Mol Pharmacol. 2006;70:1469–80.

    Article  CAS  PubMed  Google Scholar 

  9. Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW. Hypoxia-inducible factor (hif-1)alpha: its protein stability and biological functions. Experimental and. Mol Med. 2004;36:1–12.

    Article  Google Scholar 

  10. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. The tumour suppressor protein vhl targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–5.

    Article  CAS  PubMed  Google Scholar 

  11. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40:294–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ortiz-Barahona A, Villar D, Pescador N, Amigo J, del Peso L. Genome-wide identification of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating transcription-profiling data and in silico binding site prediction. Nucleic Acids Res. 2010;38:2332–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (mdr1) gene. Cancer Res. 2002;62:3387–94.

    CAS  PubMed  Google Scholar 

  14. Zaka R, Dion AS, Kusnierz A, Bohensky J, Srinivas V, Freeman T, Williams CJ. Oxygen tension regulates the expression of ank (progressive ankylosis) in an hif-1-dependent manner in growth plate chondrocytes. J Bone Miner Res. 2009;24:1869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V, Chouaib S. Pd-l1 is a novel direct target of hif-1alpha, and its blockade under hypoxia enhanced mdsc-mediated t cell activation. J Exp Med. 2014;211:781–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Semenza GL. Targeting hif-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    Article  CAS  PubMed  Google Scholar 

  17. Brocato J, Chervona Y, Costa M. Molecular responses to hypoxia-inducible factor 1alpha and beyond. Mol Pharmacol. 2014;85:651–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gee HE, Ivan C, Calin GA, Ivan M. Hypoxamirs and cancer: from biology to targeted therapy. Antioxid Redox Signal. 2014;21:1220–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferdin J, Nishida N, Wu X, Nicoloso MS, Shah MY, Devlin C, Ling H, Shimizu M, Kumar K, Cortez MA, Ferracin M, Bi Y, Yang D, Czerniak B, Zhang W, Schmittgen TD, Voorhoeve MP, Reginato MJ, Negrini M, Davuluri RV, Kunej T, Ivan M, Calin GA. Hincuts in cancer: hypoxia-induced noncoding ultraconserved transcripts. Cell Death Differ. 2013;20:1675–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cannistraci CV, Ogorevc J, Zorc M, Ravasi T, Dovc P, Kunej T. Pivotal role of the muscle-contraction pathway in cryptorchidism and evidence for genomic connections with cardiomyopathy pathways in rasopathies. BMC Med Genet. 2013;6:5.

    CAS  Google Scholar 

  21. Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins C, Clapham P, Fitzgerald S, Gil L, Girón CG, Gordon L, Hourlier T, Hunt SE, Janacek SH, Johnson N, Juettemann T, Keenan S, Lavidas I, Martin FJ, Maurel T, McLaren W, Murphy DN, Nag R, Nuhn M, Parker A, Patricio M, Pignatelli M, Rahtz M, Riat HS, Sheppard D, Taylor K, Thormann A, Vullo A, Wilder SP, Zadissa A, Birney E, Harrow J, Muffato M, Perry E, Ruffier M, Spudich G, Trevanion SJ, Cunningham F, Aken BL, Zerbino DR, Flicek P. Ensembl 2016. Nucleic Acids Res. 2016;44:D710–6.

    Article  PubMed  Google Scholar 

  22. Geiger K, Leiherer A, Muendlein A, Stark N, Geller-Rhomberg S, Saely CH, Wabitsch M, Fraunberger P, Drexel H. Identification of hypoxia-induced genes in human sgbs adipocytes by microarray analysis. PLoS One. 2011;6:e26465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garayoa M, Martinez A, Lee S, Pio R, An WG, Neckers L, Trepel J, Montuenga LM, Ryan H, Johnson R, Gassmann M, Cuttitta F. Hypoxia-inducible factor-1 (hif-1) up-regulates adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis. Mol Endocrinol. 2000;14:848–62.

    Article  CAS  PubMed  Google Scholar 

  24. Cormier-Regard S, Nguyen SV, Claycomb WC. Adrenomedullin gene expression is developmentally regulated and induced by hypoxia in rat ventricular cardiac myocytes. J Biol Chem. 1998;273:17787–92.

    Article  CAS  PubMed  Google Scholar 

  25. Nguyen SV, Claycomb WC. Hypoxia regulates the expression of the adrenomedullin and hif-1 genes in cultured hl-1 cardiomyocytes. Biochem Biophys Res Commun. 1999;265:382–6.

    Article  CAS  PubMed  Google Scholar 

  26. Guille MJ, Kneale GG. Methods for the analysis of dna-protein interactions. Mol Biotechnol. 1997;8:35–52.

    Article  CAS  PubMed  Google Scholar 

  27. Helwa R, Hoheisel JD. Analysis of dna-protein interactions: from nitrocellulose filter binding assays to microarray studies. Anal Bioanal Chem. 2010;398:2551–61.

    Article  CAS  PubMed  Google Scholar 

  28. Remes-Lenicov F, Jacobsen KX, Rogaeva A, Czesak M, Hadjighasem M, Daigle M, Albert PR. Frontiers in neuroscienceidentification of novel transcriptional regulators in the nervous system. In: Chattopadhyay A, editor. Serotonin receptors in neurobiology. Boca Raton: CRC, Taylor & Francis; 2007.

    Google Scholar 

  29. Taverner NV, Smith JC, Wardle FC. Identifying transcriptional targets. Genome Biol. 2004;5:210.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-dna interactions. Science. 2007;316:1497–502.

    Article  CAS  PubMed  Google Scholar 

  31. Mitchell PJ, Tjian R. Transcriptional regulation in mammalian cells by sequence-specific dna binding proteins. Science. 1989;245:371–8.

    Article  CAS  PubMed  Google Scholar 

  32. Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z, Berg-Dixon S, Rowan A, Yan Z, Campochiaro PA, Semenza GL. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ Res. 2003;93:1074–81.

    Article  CAS  PubMed  Google Scholar 

  33. Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, Sarkadi B, Sorrentino BP, Schuetz JD. The stem cell marker bcrp/abcg2 enhances hypoxic cell survival through interactions with heme. J Biol Chem. 2004;279:24218–25.

    Article  CAS  PubMed  Google Scholar 

  34. Gimm T, Wiese M, Teschemacher B, Deggerich A, Schodel J, Knaup KX, Hackenbeck T, Hellerbrand C, Amann K, Wiesener MS, Honing S, Eckardt KU, Warnecke C. Hypoxia-inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxia-inducible factor-1. FASEB J. 2010;24:4443–58.

    Article  CAS  PubMed  Google Scholar 

  35. Wellmann S, Bettkober M, Zelmer A, Seeger K, Faigle M, Eltzschig HK, Buhrer C. Hypoxia upregulates the histone demethylase jmjd1a via hif-1. Biochem Biophys Res Commun. 2008;372:892–7.

    Article  CAS  PubMed  Google Scholar 

  36. Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A. Hypoxia response elements in the aldolase a, enolase 1, and lactate dehydrogenase a gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 1996;271:32529–37.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Roche O, Xu C, Moriyama EH, Heir P, Chung J, Roos FC, Chen Y, Finak G, Milosevic M, Wilson BC, Teh BT, Park M, Irwin MS, Ohh M. Hypoxia promotes ligand-independent egf receptor signaling via hypoxia-inducible factor-mediated upregulation of caveolin-1. Proc Natl Acad Sci U S A. 2012;109:4892–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liao SH, Zhao XY, Han YH, Zhang J, Wang LS, Xia L, Zhao KW, Zheng Y, Guo M, Chen GQ. Proteomics-based identification of two novel direct targets of hypoxia-inducible factor-1 and their potential roles in migration/invasion of cancer cells. Proteomics. 2009;9:3901–12.

    Article  CAS  PubMed  Google Scholar 

  39. Klein A, Flugel D, Kietzmann T. Transcriptional regulation of serine/threonine kinase-15 (stk15) expression by hypoxia and hif-1. Mol Biol Cell. 2008;19:3667–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen N, Chen X, Huang R, Zeng H, Gong J, Meng W, Lu Y, Zhao F, Wang L, Zhou Q. Bcl-xl is a target gene regulated by hypoxia-inducible factor-1{alpha}. J Biol Chem. 2009;284:10004–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ke X, Fei F, Chen Y, Xu L, Zhang Z, Huang Q, Zhang H, Yang H, Chen Z, Xing J. Hypoxia upregulates cd147 through a combined effect of hif-1alpha and sp1 to promote glycolysis and tumor progression in epithelial solid tumors. Carcinogenesis. 2012;33:1598–607.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang R, Wu Y, Zhao M, Liu C, Zhou L, Shen S, Liao S, Yang K, Li Q, Wan H. Role of hif-1alpha in the regulation ace and ace2 expression in hypoxic human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2009;297:L631–40.

    Article  CAS  PubMed  Google Scholar 

  43. Grabmaier K, AdW MC, Verhaegh GW, Schalken JA, Oosterwijk E. Strict regulation of caix(g250/mn) by hif-1alpha in clear cell renal cell carcinoma. Oncogene. 2004;23:5624–31.

    Article  CAS  PubMed  Google Scholar 

  44. Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks KL, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res. 2000;60:7075–83.

    CAS  PubMed  Google Scholar 

  45. Mukhopadhyay CK, Mazumder B, Fox PL. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J Biol Chem. 2000;275:21048–54.

    Article  CAS  PubMed  Google Scholar 

  46. Eclov RJ. Mechanisms regulating the expression and function of mxr: pharmaceutical sciences and pharmacogenomics. Ann Arbor, University of California, San Francisco, 2013, Ph.D., pp 464.

  47. Tak E, Lee S, Lee J, Rashid MA, Kim YW, Park JH, Park WS, Shokat KM, Ha J, Kim SS. Human carbonyl reductase 1 upregulated by hypoxia renders resistance to apoptosis in hepatocellular carcinoma cells. J Hepatol. 2011;54:328–39.

    Article  CAS  PubMed  Google Scholar 

  48. Benita Y, Kikuchi H, Smith AD, Zhang MQ, Chung DC, Xavier RJ. An integrative genomics approach identifies hypoxia inducible factor-1 (hif-1)-target genes that form the core response to hypoxia. Nucleic Acids Res. 2009;37:4587–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Khurana P, Sugadev R, Jain J, Singh SB. Hypoxiadb: a database of hypoxia-regulated proteins. Database (Oxford). 2013;2013:bat074.

    Article  Google Scholar 

  50. Kaluz S, Kaluzova M, Stanbridge EJ. Rational design of minimal hypoxia-inducible enhancers. Biochem Biophys Res Commun. 2008;370:613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kimura H, Weisz A, Ogura T, Hitomi Y, Kurashima Y, Hashimoto K, D'Acquisto F, Makuuchi M, Esumi H. Identification of hypoxia-inducible factor 1 ancillary sequence and its function in vascular endothelial growth factor gene induction by hypoxia and nitric oxide. J Biol Chem United States. 2001;276:2292–8.

    Article  CAS  Google Scholar 

  52. MoncaleanoVega J, Ariza F, Hern¢ndez A. Association of nos3 and hif1¦á gene polymorphisms with the susceptibility of broiler chickens to develop hypoxic pulmonary hypertension. American Journal of Hypertension Research. 2013;1:17–22.

    Google Scholar 

  53. Wang C, Yuan C, Zhang L, Wu C, Li N. Differential gene expression of phosphoglyceric kinase (pgk) and hypoxic adaptation in chicken. Sci China C Life Sci. 2007;50:335–42.

    Article  CAS  PubMed  Google Scholar 

  54. Zeller KI, Jegga AG, Aronow BJ, O'Donnell KA, Dang CV. An integrated database of genes responsive to the myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol. 2003;4:R69.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bovolenta LA, Acencio ML, Lemke N. Htridb: an open-access database for experimentally verified human transcriptional regulation interactions. BMC Genomics. 2012;13:405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pahl HL. Activators and target genes of rel/nf-kappab transcription factors. Oncogene. 1999;18:6853–66.

    Article  CAS  PubMed  Google Scholar 

  57. Tang S, Han H, Bajic VB. Ergdb: estrogen responsive genes database. Nucleic Acids Res. 2004;32:D533–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pichiule P, Chavez JC, Schmidt AM, Vannucci SJ. Hypoxia-inducible factor-1 mediates neuronal expression of the receptor for advanced glycation end products following hypoxia/ischemia. J Biol Chem. 2007;282:36330–40.

    Article  CAS  PubMed  Google Scholar 

  59. Weinmann AS. Novel chip-based strategies to uncover transcription factor target genes in the immune system. Nat Rev Immunol. 2004;4:381–6.

    Article  CAS  PubMed  Google Scholar 

  60. Shim H, Lewis BC, Dolde C, Li Q, CS W, Chun YS, Dang CV. Myc target genes in neoplastic transformation. Curr Top Microbiol Immunol. 1997;224:181–90.

    CAS  PubMed  Google Scholar 

  61. Stormo GD, Zhao Y. Determining the specificity of protein-dna interactions. Nat Rev Genet. 2010;11:751–60.

    CAS  PubMed  Google Scholar 

  62. Cheng C, Shou C, Yip KY, Gerstein MB. Genome-wide analysis of chromatin features identifies histone modification sensitive and insensitive yeast transcription factors. Genome Biol. 2011;12:R111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hsu SD, Lin FM, WY W, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, Chien CH, MC W, Huang CY, Tsou AP, Huang HD. Mirtarbase: a database curates experimentally validated microrna-target interactions. Nucleic Acids Res. 2011;39:D163–9.

    Article  CAS  PubMed  Google Scholar 

  64. Schodel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR. High-resolution genome-wide mapping of hif-binding sites by chip-seq. Blood. 2011;117:e207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xia X, Kung AL. Preferential binding of hif-1 to transcriptionally active loci determines cell-type specific response to hypoxia. Genome Biol. 2009;10:R113.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS, Kung AL. Integrative analysis of hif binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci U S A. 2009;106:4260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cassavaugh J, Lounsbury KM. Hypoxia-mediated biological control. J Cell Biochem. 2011;112:735–44.

    Article  CAS  PubMed  Google Scholar 

  68. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8:967–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li Y, D Y. Cancer therapy by targeting hypoxia-inducible factor-1. Curr Cancer Drug Targets. 2010;10:782–96.

    Article  CAS  PubMed  Google Scholar 

  70. Patiar S, Harris AL. Role of hypoxia-inducible factor-1alpha as a cancer therapy target. Endocr Relat Cancer. 2006;13(Suppl 1):S61–75.

    Article  CAS  PubMed  Google Scholar 

  71. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (strobe) statement: guidelines for reporting observational studies. Epidemiology. 2007;18:800–4.

    Article  Google Scholar 

  72. Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, Khoury MJ, Cohen B, Davey-Smith G, Grimshaw J, Scheet P, Gwinn M, Williamson RE, Zou GY, Hutchings K, Johnson CY, Tait V, Wiens M, Golding J, van Duijn C, McLaughlin J, Paterson A, Wells G, Fortier I, Freedman M, Zecevic M, King R, Infante-Rivard C, Stewart A, Birkett N. Strengthening the reporting of genetic association studies (strega)--an extension of the strobe statement. Eur J Clin Investig. 2009;39:247–66.

    Article  Google Scholar 

  73. Peters SP. Reporting and evaluating genetic association studies. Respir Res. 2009;10:109.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hollenbach JA, Mack SJ, Gourraud PA, Single RM, Maiers M, Middleton D, Thomson G, Marsh SG, Varney MD. A community standard for immunogenomic data reporting and analysis: proposal for a strengthening the reporting of immunogenomic studies statement. Tissue Antigens. 2011;78:333–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Janssens AC, Ioannidis JP, van Duijn CM, Little J, Khoury MJ. Strengthening the reporting of genetic risk prediction studies: the grips statement. Eur J Hum Genet. 2011;19:833–6.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gallo V, Egger M, McCormack V, Farmer PB, Ioannidis JP, Kirsch-Volders M, Matullo G, Phillips DH, Schoket B, Stromberg U, Vermeulen R, Wild C, Porta M, Vineis P. Strengthening the reporting of observational studies in epidemiology–molecular epidemiology (strobe-me): an extension of the strobe statement. Mutagenesis. 2012;27:17–29.

    Article  CAS  PubMed  Google Scholar 

  77. Saffery R, Gordon L. Time for a standardized system of reporting sites of genomic methylation. Genome Biol. 2015;16:85.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pipan V, Kunej T. Initiative for standardization of the format of the next-generation sequencing (ngs) results. Discoveries. 2015;3:e44.

    Article  Google Scholar 

  79. Urh K, Kunej T. Molecular mechanisms of cryptorchidism development: update of the database, disease comorbidity, and initiative for standardization of reporting in scientific literature. Andrology 2016;4(5):894–902.

  80. Spiegelman BM, Heinrich R. Biological control through regulated transcriptional coactivators. Cell. 2004;119:157–67.

    Article  CAS  PubMed  Google Scholar 

  81. Luo W, Chang R, Zhong J, Pandey A, Semenza GL. Histone demethylase jmjd2c is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression. Proc Natl Acad Sci U S A. 2012;109:E3367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Kunej.

Ethics declarations

Funding

This work was supported by the Slovenian Research Agency (ARRS) through the Research program (P4-0220).

Electronic supplementary material

Supplemental Figure 1

. Identified polymorphisms within HRE sites of four target genes. Sequence of the target genes: ABCG2 (A), ACE (B), CA9 (C), and CP (D). Biotype of identified polymorphisms within HRE sites (E). (DOCX 1512 kb)

Supplemental Table 1

. Collected data associated with 98 HIF-1α target genes. (XLSX 38 kb)

Supplemental Table 2

. Pathway analysis of HIF-1α downstream targets. (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slemc, L., Kunej, T. Transcription factor HIF1A: downstream targets, associated pathways, polymorphic hypoxia response element (HRE) sites, and initiative for standardization of reporting in scientific literature. Tumor Biol. 37, 14851–14861 (2016). https://doi.org/10.1007/s13277-016-5331-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5331-4

Keywords

Navigation