Skip to main content

Advertisement

Log in

Targeting Netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis

  • Original Article
  • Published:
Tumor Biology

Abstract

Glioblastoma (GBM) is an aggressive malignant brain tumor that still lacks effective therapy. Glioblastoma stem cells (GBM-SCs) were identified to contribute to aggressive phenotypes and poor clinical outcomes for GBM. Netrin-1, an axon guidance molecule, has been found in several tumors in adults. However, the role of Netrin-1 in GBM-SCs remains largely unknown. In this study, CD133-positive U251 GBM cells were used as a putative GBM-SC population to identify the functions of Netrin-1. Using lentiviral transduction, Netrin-1 miR RNAi vectors were transduced into CD133-positive U251 cells. We demonstrated that cell proliferation and survival were decreased following targeted deletion of Netrin-1. Cell invasion was dramatically diminished in Netrin-1 knockdown GBM-SCs. Moreover, Netrin-1 knockdown GBM-SCs exhibited less proangiogenic activity. In conclusion, Netrin-1 may represent a therapeutic target in glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21:2683–710.

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase iii study: 5-year analysis of the eortc-ncic trial. Lancet Oncol. 2009;10:459–66.

    Article  CAS  PubMed  Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  CAS  PubMed  Google Scholar 

  4. Ostrom QT, Gittleman H, Liao P, et al. Cbtrus statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol. 2014;16(Suppl 4):iv1–63.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Urbanska K, Sokolowska J, Szmidt M, Sysa P. Glioblastoma multiforme—an overview. Contemp Oncol (Pozn). 2014;18:307–12.

    Google Scholar 

  6. Bello MJ, Alonso ME, Aminoso C, et al. Hypermethylation of the DNA repair gene mgmt: association with tp53 g:C to a:T transitions in a series of 469 nervous system tumors. Mutat Res. 2004;554:23–32.

    Article  CAS  PubMed  Google Scholar 

  7. Kamiryo T, Tada K, Shiraishi S, et al. Correlation between promoter hypermethylation of the o6-methylguanine-deoxyribonucleic acid methyltransferase gene and prognosis in patients with high-grade astrocytic tumors treated with surgery, radiotherapy, and 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea-based chemotherapy. Neurosurgery. 2004;54:349–57 .discussion 57

    Article  PubMed  Google Scholar 

  8. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.

    Article  CAS  PubMed  Google Scholar 

  10. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.

    Article  CAS  PubMed  Google Scholar 

  11. Ignatova TN, Kukekov VG, Laywell ED, et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002;39:193–206.

    Article  PubMed  Google Scholar 

  12. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    CAS  PubMed  Google Scholar 

  13. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.

    Article  CAS  PubMed  Google Scholar 

  14. Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell rna-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meyer M, Reimand J, Lan X, et al. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. Proc Natl Acad Sci U S A. 2015;112:851–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johannessen TC, Wang J, Skaftnesmo KO, et al. Highly infiltrative brain tumours show reduced chemosensitivity associated with a stem cell-like phenotype. Neuropathol Appl Neurobiol. 2009;35:380–93.

    Article  CAS  PubMed  Google Scholar 

  17. Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of cd133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen R, Nishimura MC, Bumbaca SM, et al. A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell. 2010;17:362–75.

    Article  CAS  PubMed  Google Scholar 

  19. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    Article  CAS  PubMed  Google Scholar 

  20. Yuan X, Curtin J, Xiong Y, et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004;23:9392–400.

    Article  CAS  PubMed  Google Scholar 

  21. Graef IA, Wang F, Charron F, et al. Neurotrophins and netrins require calcineurin/nfat signaling to stimulate outgrowth of embryonic axons. Cell. 2003;113:657–70.

    Article  CAS  PubMed  Google Scholar 

  22. Ming GL, Song HJ, Berninger B, et al. Camp-dependent growth cone guidance by netrin-1. Neuron. 1997;19:1225–35.

    Article  CAS  PubMed  Google Scholar 

  23. Serafini T, Kennedy TE, Galko MJ, et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans unc-6. Cell. 1994;78:409–24.

    Article  CAS  PubMed  Google Scholar 

  24. Delloye-Bourgeois C, Brambilla E, Coissieux MM, et al. Interference with netrin-1 and tumor cell death in non-small cell lung cancer. J Natl Cancer Inst. 2009;101:237–47.

    Article  CAS  PubMed  Google Scholar 

  25. Dumartin L, Quemener C, Laklai H, et al. Netrin-1 mediates early events in pancreatic adenocarcinoma progression, acting on tumor and endothelial cells. Gastroenterology. 2010;138:1595–606 .606 e1-8

    Article  CAS  PubMed  Google Scholar 

  26. Paradisi A, Maisse C, Coissieux MM, et al. Netrin-1 up-regulation in inflammatory bowel diseases is required for colorectal cancer progression. Proc Natl Acad Sci U S A. 2009;106:17146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qi Q, Li DY, Luo HR, et al. Netrin-1 exerts oncogenic activities through enhancing yes-associated protein stability. Proc Natl Acad Sci U S A. 2015;112:7255–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Akino T, Han X, Nakayama H, et al. Netrin-1 promotes medulloblastoma cell invasiveness and angiogenesis, and demonstrates elevated expression in tumor tissue and urine of patients with pediatric medulloblastoma. Cancer Res. 2014;74:3716–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mazelin L, Bernet A, Bonod-Bidaud C, et al. Netrin-1 controls colorectal tumorigenesis by regulating apoptosis. Nature. 2004;431:80–4.

    Article  CAS  PubMed  Google Scholar 

  30. Delloye-Bourgeois C, Fitamant J, Paradisi A, et al. Netrin-1 acts as a survival factor for aggressive neuroblastoma. J Exp Med. 2009;206:833–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Llambi F, Causeret F, Bloch-Gallego E, Mehlen P. Netrin-1 acts as a survival factor via its receptors unc5h and dcc. EMBO J. 2001;20:2715–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shimizu A, Nakayama H, Wang P, et al. Netrin-1 promotes glioblastoma cell invasiveness and angiogenesis by multiple pathways including activation of rhoa, cathepsin b, and camp-response element-binding protein. J Biol Chem. 2013;288:2210–22.

    Article  CAS  PubMed  Google Scholar 

  33. Ylivinkka I, Hu Y, Chen P, et al. Netrin-1-induced activation of notch signaling mediates glioblastoma cell invasion. J Cell Sci. 2013;126:2459–69.

    Article  CAS  PubMed  Google Scholar 

  34. Fitamant J, Guenebeaud C, Coissieux MM, et al. Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci U S A. 2008;105:4850–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–21.

    Article  CAS  PubMed  Google Scholar 

  36. Goffart N, Kroonen J, Rogister B. Glioblastoma-initiating cells: relationship with neural stem cells and the micro-environment. Cancers (Basel). 2013;5:1049–71.

    Article  CAS  Google Scholar 

  37. Uchida N, Buck DW, He D, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000;97:14720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11:69–82.

    Article  CAS  PubMed  Google Scholar 

  39. Wang W, Reeves WB, Pays L, et al. Netrin-1 overexpression protects kidney from ischemia reperfusion injury by suppressing apoptosis. Am J Pathol. 2009;175:1010–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66:7843–8.

    Article  CAS  PubMed  Google Scholar 

  41. Tadagavadi RK, Wang W, Ramesh G. Netrin-1 regulates th1/th2/th17 cytokine production and inflammation through unc5b receptor and protects kidney against ischemia-reperfusion injury. J Immunol. 2010;185:3750–8.

    Article  CAS  PubMed  Google Scholar 

  42. Tsuchiya A, Hayashi T, Deguchi K, et al. Expression of netrin-1 and its receptors dcc and neogenin in rat brain after ischemia. Brain Res. 2007;1159:1–7.

    Article  CAS  PubMed  Google Scholar 

  43. Mehlen P, Guenebeaud C. Netrin-1 and its dependence receptors as original targets for cancer therapy. Curr Opin Oncol. 2010;22:46–54.

    Article  CAS  PubMed  Google Scholar 

  44. Forcet C, Stein E, Pays L, et al. Netrin-1-mediated axon outgrowth requires deleted in colorectal cancer-dependent mapk activation. Nature. 2002;417:443–7.

    Article  CAS  PubMed  Google Scholar 

  45. Shekarabi M, Moore SW, Tritsch NX, et al. Deleted in colorectal cancer binding netrin-1 mediates cell substrate adhesion and recruits cdc42, rac1, pak1, and n-wasp into an intracellular signaling complex that promotes growth cone expansion. J Neurosci. 2005;25:3132–41.

    Article  CAS  PubMed  Google Scholar 

  46. Liu G, Beggs H, Jurgensen C, et al. Netrin requires focal adhesion kinase and src family kinases for axon outgrowth and attraction. Nat Neurosci. 2004;7:1222–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rajasekharan S, Bin JM, Antel JP, Kennedy TEA. Central role for rhoa during oligodendroglial maturation in the switch from netrin-1-mediated chemorepulsion to process elaboration. J Neurochem. 2010;113:1589–97.

    CAS  PubMed  Google Scholar 

  48. Lepekhin EA, Eliasson C, Berthold CH, et al. Intermediate filaments regulate astrocyte motility. J Neurochem. 2001;79:617–25.

    Article  CAS  PubMed  Google Scholar 

  49. Hagemann C, Anacker J, Ernestus RI, Vince GHA. Complete compilation of matrix metalloproteinase expression in human malignant gliomas. World J Clin Oncol. 2012;3:67–79.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fanjul-Fernandez M, Folgueras AR, Cabrera S, Lopez-Otin C. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta. 2010;1803:3–19.

    Article  CAS  PubMed  Google Scholar 

  51. McCready J, Broaddus WC, Sykes V, Fillmore HL. Association of a single nucleotide polymorphism in the matrix metalloproteinase-1 promoter with glioblastoma. Int J Cancer. 2005;117:781–5.

    Article  CAS  PubMed  Google Scholar 

  52. Komatsu K, Nakanishi Y, Nemoto N, et al. Expression and quantitative analysis of matrix metalloproteinase-2 and −9 in human gliomas. Brain Tumor Pathol. 2004;21:105–12.

    Article  CAS  PubMed  Google Scholar 

  53. Wang M, Wang T, Liu S, et al. The expression of matrix metalloproteinase-2 and −9 in human gliomas of different pathological grades. Brain Tumor Pathol. 2003;20:65–72.

    Article  PubMed  Google Scholar 

  54. Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer. 2003;3:489–501.

    Article  CAS  PubMed  Google Scholar 

  55. Lakka SS, Gondi CS, Yanamandra N, et al. Inhibition of cathepsin b and mmp-9 gene expression in glioblastoma cell line via rna interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene. 2004;23:4681–9.

    Article  CAS  PubMed  Google Scholar 

  56. Eeckhout Y, Vaes G. Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin b, plasmin and kallikrein, and spontaneous activation. Biochem J. 1977;166:21–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tu T, Zhang C, Yan H, et al. Cd146 acts as a novel receptor for netrin-1 in promoting angiogenesis and vascular development. Cell Res. 2015;25:275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank to the Faculty of Medical Technology, Mahidol University for facility support, Siriraj Core Research Facility (SiCRF) for assistance with flow cytometry and members of Siriraj Center of Excellence for Stem Cell Research (SiSCR) for their supports and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sith Sathornsumetee or Surapol Issaragrisil.

Ethics declarations

Funding

This research project was funded by grants from Mahidol University, Thailand Research Fund (Grant no. RTA 488-0007), the Commission on Higher Education (Grant no. CHE-RES-RG-49). S.I. is a Senior Research Scholar of Thailand Research Fund. T.S. was supported by the Thailand Research Funds through the Royal Golden Jubilee PhD Program (PhD/0199/2550). S.S. is partially supported by grants from the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology through its program of Center of Excellence Network and Faculty of Medicine Siriraj Hospital, Mahidol University.

Conflicts of interest

None

Electronic supplementary material

ESM 1

(DOCX 28 kb)

Supplementary Table 1

(DOCX 18 kb)

Supplementary Table 2

(DOCX 17 kb)

Supplementary Table 3

(DOCX 17 kb)

Supplementary Fig. 1

(DOCX 281 kb)

Supplementary Fig. 2

(DOCX 2055 kb)

Supplementary Fig. 3

(DOCX 777 kb)

Supplementary Fig. 4

(DOCX 1338 kb)

Supplementary Fig. 5

(DOCX 39 kb)

Supplementary Fig. 6

(DOCX 392 kb)

Supplementary Fig. 7

(DOCX 640 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanvoranart, T., Supokawej, A., Kheolamai, P. et al. Targeting Netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis. Tumor Biol. 37, 14949–14960 (2016). https://doi.org/10.1007/s13277-016-5314-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5314-5

Keywords

Navigation