Skip to main content

Advertisement

Log in

Mesenchymal stem cells as a double-edged sword in suppression or progression of solid tumor cells

  • Review
  • Published:
Tumor Biology

Abstract

Tumor cells are able to attract mesenchymal stem cells (MSCs) to primary tumor site. On the other hand, MSCs secrete various factors to attract tumor cells towards BM. In this review, in addition to assessment of MSCs function at tumor sites and their impact on growth and metastasis of tumor cells, the importance of MSC in attraction of malignant cells to BM and their involvement in drug resistance of tumor cells have also been studied. Relevant literature was identified by a PubMed search (2000–2015) of English-language literature using the terms mesenchymal stem cells, cancer cell, metastasis, and tumor microenvironment. MSCs migrate towards tumor microenvironment and are involved in both pro-tumorigenic and antitumorigenic functions. The dual function of MSCs at tumor sites is dependent upon a variety of factors, including the type and origin of MSCs, the cancer cell line under study, in vivo or in vitro conditions, the factors secreted by MSCs and interactions between MSCs, host immune cells and cancer cells. Therefore, MSCs can be regarded both as friends and enemies of cancer cells. Although the role of a number of pathways, including IL-6/STAT3 pathway, has been indicated in controlling the interaction between MSCs and tumor cells, other mechanisms by which MSCs can control the tumor cells are not clear yet. A better understanding of these mechanisms through further studies can determine the exact role of MSCs in cancer progression and identify them as important therapeutic agents or targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

  1. Khan AA, Paul A, Abbasi S, Prakash S. Mitotic and antiapoptotic effects of nanoparticles coencapsulating human VEGF and human angiopoietin-1 on vascular endothelial cells. Int J Nanomedicine. 2011;6:1069.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49.

    Article  CAS  PubMed  Google Scholar 

  3. Westerweel PE, Verhaar MC. Directing myogenic mesenchymal stem cell differentiation. Circ Res. 2008;103(6):560–1.

    Article  CAS  PubMed  Google Scholar 

  4. Nadri S, Soleimani M, Mobarra Z, Amini S. Expression of dopamine-associated genes on conjunctiva stromal-derived human mesenchymal stem cells. Biochem Biophys Res Commun. 2008;377(2):423–8.

    Article  CAS  PubMed  Google Scholar 

  5. Vempati P, Popel AS, Mac GF. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev. 2014;25(1):1–19.

    Article  CAS  PubMed  Google Scholar 

  6. Saba F, Soleimani M, Atashi A, Mortaz E, Shahjahani M, Roshandel E, et al. The role of the nervous system in hematopoietic stem cell mobilization. Lab Hematol. 2013;19(3):8–16.

    Article  PubMed  Google Scholar 

  7. Kuhn NZ, Tuan RS. Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J Cell Physiol. 2010;222(2):268–77.

    Article  CAS  PubMed  Google Scholar 

  8. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  9. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110(10):3499–506.

    Article  CAS  PubMed  Google Scholar 

  10. Lin G, Liu G, Banie L, Wang G, Ning H, Lue TF, et al. Tissue distribution of mesenchymal stem cell marker Stro-1. Stem Cells Dev. 2011;20(10):1747–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RC. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood. 2007;109(4):1743–51.

    Article  CAS  PubMed  Google Scholar 

  12. Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013;13(12):871–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang S, Ouyang N, Lin L, Chen L, Wu W, Su F, et al. HGF-induced PKCζ activation increases functional CXCR4 expression in human breast cancer cells. PLoS One. 2012;7(1):e29124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.

    Article  CAS  PubMed  Google Scholar 

  15. Locatelli V, Bianchi VE. Effect of GH/IGF-1 on bone metabolism and osteoporsosis. Int J Endocrinol 2014;2014.

  16. Bowers LW, Rossi EL, O’Flanagan CH. The role of the insulin/IGF system in cancer: lessons learned from clinical trials and the energy balance-cancer link. Frontiers in Endocrinology. 2015;6.

  17. Saki N, Abroun S, Hagh MF, Asgharei F. Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J (Yakhteh). 2011;13(3):131.

    CAS  Google Scholar 

  18. Shi H, Cheng Y, Ye J, Cai P, Zhang J, Li R, et al. bFGF promotes the migration of human dermal fibroblasts under diabetic conditions through reactive oxygen species production via the PI3K/Akt-Rac1-JNK pathways. Int J Biol Sci. 2015;11(7):845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. da Silva ML, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(5):419–27.

    Google Scholar 

  20. Buschmann IR, Hoefer IE, van Royen N, Katzer E, Braun-Dulleaus R, Heil M, et al. GM-CSF: a strong arteriogenic factor acting by amplification of monocyte function. Atherosclerosis. 2001;159(2):343–56.

    Article  CAS  PubMed  Google Scholar 

  21. Hong I-S, Lee H-Y, Kang K-S. Mesenchymal stem cells and cancer: friends or enemies? Mutat Res/Fundam Mol Mech Mutagen. 2014;768:98–106.

    Article  CAS  Google Scholar 

  22. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73.

    Article  CAS  PubMed  Google Scholar 

  23. Arango-Rodriguez ML, Ezquer F, Ezquer M, Conget P. Could cancer and infection be adverse effects of mesenchymal stromal cell therapy? World J Stem Cells. 2015;7(2):408.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ling W, Zhang J, Yuan Z, Ren G, Zhang L, Chen X, et al. Mesenchymal stem cells use IDO to regulate immunity in tumor microenvironment. Cancer Res. 2014;74(5):1576–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baban B, Penberthy WT, Mozaffari MS. The potential role of indoleamine 2, 3 dioxygenase (IDO) as a predictive and therapeutic target for diabetes treatment: a mythical truth. EPMA J. 2010;1(1):46–55.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol. 2015;6:334–43.

    Article  PubMed  CAS  Google Scholar 

  27. Mathieu M-E, Saucourt C, Mournetas V, Gauthereau X, Thézé N, Praloran V, et al. LIF-dependent signaling: new pieces in the Lego. Stem Cell Rev Rep. 2012;8(1):1–15.

    Article  CAS  Google Scholar 

  28. Li X, Yang Q, Yu H, Wu L, Zhao Y, Zhang C, et al. LIF promotes tumorigenesis and metastasis of breast cancer through the AKT-mTOR pathway. Oncotarget. 2014;5(3):78.

    Google Scholar 

  29. Luheshi N, Rothwell N, Brough D. Dual functionality of interleukin-1 family cytokines: implications for anti-interleukin-1 therapy. Br J Pharmacol. 2009;157(8):1318–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci. 2012;8(9):1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuai W-X, Wang Q, Yang X-Z, Zhao Y, Yu R, Tang X-J. Interleukin-8 associates with adhesion, migration, invasion and chemosensitivity of human gastric cancer cells. World J Gastroenterol: WJG. 2012;18(9):979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kamalakar A, Bendre MS, Washam CL, Fowler TW, Carver A, Dilley JD, et al. Circulating interleukin-8 levels explain breast cancer osteolysis in mice and humans. Bone. 2014;61:176–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brindle NP, Saharinen P, Alitalo K. Signaling and functions of angiopoietin-1 in vascular protection. Circ Res. 2006;98(8):1014–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Y, Zheng L, Xu X, Song L, Li Y, Li W, et al. Mesenchymal stem cells modified with angiopoietin-1 gene promote wound healing. Stem Cell Res Ther. 2013;4(5):113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gibbs BF, Yasinska IM, Oniku AE, Sumbayev VV. Effects of stem cell factor on hypoxia-inducible factor 1 alpha accumulation in human acute myeloid leukaemia and LAD2 mast cells. PLoS One. 2011;6(7):e22502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao C, Li S, Zhao T, Chen J, Ren H, Zhang H, et al. SCF, regulated by HIF-1α, promotes pancreatic ductal adenocarcinoma cell progression. PloS one. 2015;10(3).

  37. Ren X, Hu B, Colletti L. Stem cell factor and its receptor, c-kit, are important for hepatocyte proliferation in wild-type and tumor necrosis factor receptor-1 knockout mice after 70 % hepatectomy. Surgery. 2008;143(6):790–802.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jung Y, Wang J, Schneider A, Sun Y-X, Koh-Paige A, Osman N, et al. Regulation of SDF-1 (CXCL12) production by osteoblasts: a possible mechanism for stem cell homing. Bone. 2006;38(4):497–508.

    Article  CAS  PubMed  Google Scholar 

  39. Xiao Q, Ye S, Oberhollenzer F, Mayr A, Jahangiri M, Willeit J, et al. SDF1 gene variation is associated with circulating SDF1alpha level and endothelial progenitor cell number: the Bruneck study. PLoS One. 2008;3(12):e4061-e.

    Article  CAS  Google Scholar 

  40. Lysko DE, Putt M, Golden JA. SDF1 regulates leading process branching and speed of migrating interneurons. J Neurosci. 2011;31(5):1739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Perron JC, Dodd J. Structural distinctions in BMPs underlie divergent signaling in spinal neurons. Neural Dev. 2012;7(1):16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Djouad F, Bouffi C, Ghannam S, Noël D, Jorgensen C. Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol. 2009;5(7):392–9.

    Article  CAS  PubMed  Google Scholar 

  43. Wan L, Pantel K, Kang Y. Tumor metastasis: moving new biological insights into the clinic. Nat Med. 2013;19(11):1450–64.

    Article  CAS  PubMed  Google Scholar 

  44. Rahim F, Hajizamani S, Mortaz E, Ahmadzadeh A, Shahjahani M, Shahrabi S, et al. Molecular regulation of bone marrow metastasis in prostate and breast cancer. Bone marrow research. 2014;2014.

  45. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401.

    Article  CAS  PubMed  Google Scholar 

  46. Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 2009;9(4):285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Olaso E, Santisteban A, Bidaurrazaga J, Gressner AM, Rosenbaum J, Vidal-Vanaclocha F. Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology. 1997;26(3):634–42.

    Article  CAS  PubMed  Google Scholar 

  48. Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F. Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol. 2007;86(1):8–16.

    Article  CAS  PubMed  Google Scholar 

  49. van Deventer HW, Wu QP, Bergstralh DT, Davis BK, O’Connor BP, Ting JP-Y, et al. CC chemokine receptor 5 on pulmonary fibrocytes facilitates migration and promotes metastasis via matrix metalloproteinase 9. Am J Pathol. 2008;173(1):253–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ramdasi S, Sarang S, Viswanathan C. Potential of mesenchymal stem cell based application in cancer. Int J Hematol-oncol Stem Cell Res. 2015;9(2):95.

    PubMed  PubMed Central  Google Scholar 

  51. Bergfeld SA, DeClerck YA. Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev. 2010;29(2):249–61.

    Article  PubMed  Google Scholar 

  52. Schichor C, Birnbaum T, Etminan N, Schnell O, Grau S, Miebach S, et al. Vascular endothelial growth factor a contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol. 2006;199(2):301–10.

    Article  CAS  PubMed  Google Scholar 

  53. Li GC, Zhang HW, Zhao QC, Sun L, Yang JJ, Hong L, et al. Mesenchymal stem cells promote tumor angiogenesis via the action of transforming growth factor β1. Oncol Letters. 2016;11(2):1089–94.

    Google Scholar 

  54. Feng B, Chen L. Review of mesenchymal stem cells and tumors: executioner or coconspirator? Cancer Biother Radiopharm. 2009;24(6):717–21.

    Article  CAS  PubMed  Google Scholar 

  55. Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 2008;15(10):730–8.

    Article  CAS  PubMed  Google Scholar 

  56. Dwyer R, Potter-Beirne S, Harrington K, Lowery A, Hennessy E, Murphy J, et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res. 2007;13(17):5020–7.

    Article  CAS  PubMed  Google Scholar 

  57. Magge SN, Malik SZ, Royo NC, Chen HI, Yu L, Snyder EY, et al. Role of monocyte chemoattractant protein-1 (MCP-1/CCL2) in migration of neural progenitor cells toward glial tumors. J Neurosci Res. 2009;87(7):1547–55.

    Article  CAS  PubMed  Google Scholar 

  58. Schmidt NO, Koeder D, Messing M, Mueller F-J, Aboody KS, Kim SU, et al. Vascular endothelial growth factor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neural stem cells to the neurovascular niche. Brain Res. 2009;1268:24–37.

    Article  CAS  PubMed  Google Scholar 

  59. Sun L, Lee J, Fine HA. Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. J Clin Investig. 2004;113(9):1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Garzotto D, Giacobini P, Crepaldi T, Fasolo A, De Marchis S. Hepatocyte growth factor regulates migration of olfactory interneuron precursors in the rostral migratory stream through met–Grb2 coupling. J Neurosci. 2008;28(23):5901–9.

    Article  CAS  PubMed  Google Scholar 

  61. Carbajal KS, Schaumburg C, Strieter R, Kane J, Lane TE. Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proc Natl Acad Sci. 2010;107(24):11068–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells. 2006;24(5):1254–64.

    Article  CAS  PubMed  Google Scholar 

  63. Abarbanell AM, Coffey AC, Fehrenbacher JW, Beckman DJ, Herrmann JL, Weil B, et al. Proinflammatory cytokine effects on mesenchymal stem cell therapy for the ischemic heart. Ann Thorac Surg. 2009;88(3):1036–43.

    Article  PubMed  Google Scholar 

  64. Loebinger MR, Kyrtatos PG, Turmaine M, Price AN, Pankhurst Q, Lythgoe MF, et al. Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Res. 2009;69(23):8862–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G, et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci. 2009;106(12):4822–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Patel SA, Meyer JR, Greco SJ, Corcoran KE, Bryan M, Rameshwar P. Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-β. J Immunol. 2010;184(10):5885–94.

    Article  CAS  PubMed  Google Scholar 

  67. Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M, et al. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells. 2007;25(2):520–8.

    Article  CAS  PubMed  Google Scholar 

  68. Norozi F, Ahmadzadeh A, Shahjahani M, Shahrabi S, Saki N. Twist as a new prognostic marker in hematological malignancies. Clinical and Translational Oncology. 2015:1–12.

  69. Catena R, Bhattacharya N, El Rayes T, Wang S, Choi H, Gao D, et al. Bone marrow–derived Gr1+ cells can generate a metastasis-resistant microenvironment via induced secretion of thrombospondin-1. Cancer Discov. 2013;3(5):578–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gutova M, Najbauer J, Frank RT, Kendall SE, Gevorgyan A, Metz MZ, et al. Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells. 2008;26(6):1406–13.

    Article  CAS  PubMed  Google Scholar 

  71. Ho IA, Chan KY, Ng WH, Guo CM, Hui KM, Cheang P, et al. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells. 2009;27(6):1366–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274–84.

    Article  CAS  PubMed  Google Scholar 

  73. Clines GA, Guise TA. Molecular mechanisms and treatment of bone metastasis. Expert Rev Mol Med. 2008;10:e7.

    Article  PubMed  Google Scholar 

  74. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350(16):1655–64.

    Article  CAS  PubMed  Google Scholar 

  75. Chiang AC, Massagué J. Molecular basis of metastasis. N Engl J Med. 2008;359(26):2814–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schuettpelz LG, Link DC. Niche competition and cancer metastasis to bone. J Clin Invest. 2011;121(4):1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Burger JA, Kipps TJ. Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leuk Lymphoma. 2002;43(3):461–6.

    Article  CAS  PubMed  Google Scholar 

  78. Molloy AP, Martin FT, Dwyer RM, Griffin TP, Murphy M, Barry FP, et al. Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int J Cancer. 2009;124(2):326–32.

    Article  CAS  PubMed  Google Scholar 

  79. Urashima M, Chen BP, Chen S, Pinkus GS, Bronson RT, Dedera DA, et al. The development of a model for the homing of multiple myeloma cells to human bone marrow. Blood. 1997;90(2):754–65.

    CAS  PubMed  Google Scholar 

  80. Scupoli MT, Donadelli M, Cioffi F, Rossi M, Perbellini O, Malpeli G, et al. Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-κB and JNK/AP-1 pathways. Haematologica. 2008;93(4):524–32.

    Article  CAS  PubMed  Google Scholar 

  81. Kurtova AV, Tamayo AT, Ford RJ, Burger JA. Mantle cell lymphoma cells express high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the stromal microenvironment and specific targeting. Blood. 2009;113(19):4604–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ratajczak M, Zuba-Surma E, Kucia M, Reca R, Wojakowski W, Ratajczak J. The pleiotropic effects of the SDF-1–CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia. 2006;20(11):1915–24.

    Article  CAS  PubMed  Google Scholar 

  83. Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)–dependent migration and homing in multiple myeloma. Blood. 2007;109(7):2708–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Abarrategi A, Mariñas-Pardo L, Mirones I, Rincón E, García-Castro J. Mesenchymal niches of bone marrow in cancer. Clin Transl Oncol. 2011;13(9):611–6.

    Article  PubMed  Google Scholar 

  85. Cook G, Dumbar M, Franklin I. The role of adhesion molecules in multiple myeloma. Acta Haematol. 1997;97(1–2):81–9.

    CAS  PubMed  Google Scholar 

  86. Faid L, Riet I, Waele M, Facon T, Schots R, Lacor P, et al. Adhesive interactions between tumour cells and bone marrow stromal elements in human multiple myeloma. Eur J Haematol. 1996;57(5):349–58.

    Article  CAS  PubMed  Google Scholar 

  87. Thomas X, Anglaret B, Magaud J-P, Epstein J, Archimbaud E. Interdependence between cytokines and cell adhesion molecules to induce interleukin-6 production by stromal cells in myeloma. Leuk Lymphoma. 1998;32(1–2):107–19.

    Article  CAS  PubMed  Google Scholar 

  88. Uchiyama H, Barut BA, Chauhan D, Cannistra SA, Anderson KC. Characterization of adhesion molecules on human myeloma cell lines. Blood. 1992;80(9):2306–14.

    CAS  PubMed  Google Scholar 

  89. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood. 1999;93(5):1658–67.

    CAS  PubMed  Google Scholar 

  90. Michigami T, Shimizu N, Williams PJ, Niewolna M, Dallas SL, Mundy GR, et al. Cell–cell contact between marrow stromal cells and myeloma cells via VCAM-1 and α4β1-integrin enhances production of osteoclast-stimulating activity. Blood. 2000;96(5):1953–60.

    CAS  PubMed  Google Scholar 

  91. Taguchi A, Suei Y, Ogawa I, Naito K, Nagasaki T, Lee K, et al. Metastatic retinoblastoma of the maxilla and mandible. Dentomaxillofacial Radiology. 2014.

  92. DuBois SG, Kalika Y, Lukens JN, Brodeur GM, Seeger RC, Atkinson JB, et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol. 1999;21(3):181–9.

    Article  CAS  PubMed  Google Scholar 

  93. Sohara Y, Shimada H, Minkin C, Erdreich-Epstein A, Nolta JA, DeClerck YA. Bone marrow mesenchymal stem cells provide an alternate pathway of osteoclast activation and bone destruction by cancer cells. Cancer Res. 2005;65(4):1129–35.

    Article  CAS  PubMed  Google Scholar 

  94. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52.

    Article  CAS  PubMed  Google Scholar 

  95. Ara T, Song L, Shimada H, Keshelava N, Russell HV, Metelitsa LS, et al. Interleukin-6 in the bone marrow microenvironment promotes the growth and survival of neuroblastoma cells. Cancer Res. 2009;69(1):329–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fukaya Y, Shimada H, Wang L-C, Zandi E, DeClerck YA. Identification of galectin-3-binding protein as a factor secreted by tumor cells that stimulates interleukin-6 expression in the bone marrow stroma. J Biol Chem. 2008;283(27):18573–81.

    Article  CAS  PubMed  Google Scholar 

  97. Brocke-Heidrich K, Kretzschmar AK, Pfeifer G, Henze C, Löffler D, Koczan D, et al. Interleukin-6–dependent gene expression profiles in multiple myeloma INA-6 cells reveal a Bcl-2 family–independent survival pathway closely associated with Stat3 activation. Blood. 2004;103(1):242–51.

    Article  CAS  PubMed  Google Scholar 

  98. Aggarwal BB, Sethi G, Ahn KS, Sandur SK, Pandey MK, Kunnumakkara AB, et al. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer. Ann N Y Acad Sci. 2006;1091(1):151–69.

    Article  CAS  PubMed  Google Scholar 

  99. Abroun S, Saki N, Ahmadvand M, Asghari F, Salari F, Rahim F. STATs: an old story, yet mesmerizing. Cell J (Yakhteh). 2015;17(3):395.

    Google Scholar 

  100. Yamagiwa Y, Marienfeld C, Meng F, Holcik M, Patel T. Translational regulation of X-linked inhibitor of apoptosis protein by interleukin-6: a novel mechanism of tumor cell survival. Cancer Res. 2004;64(4):1293–8.

    Article  CAS  PubMed  Google Scholar 

  101. Lee G, Piquette-Miller M. Influence of IL-6 on MDR and MRP-mediated multidrug resistance in human hepatoma cells. Can J Physiol Pharmacol. 2001;79(10):876–84.

    Article  CAS  PubMed  Google Scholar 

  102. Dreuw A, Hermanns HM, Heise R, Joussen S, Rodríguez F, Marquardt Y, et al. Interleukin-6-type cytokines upregulate expression of multidrug resistance-associated proteins in NHEK and dermal fibroblasts. J Investig Dermatol. 2005;124(1):28–37.

    Article  CAS  PubMed  Google Scholar 

  103. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007;25(11):1315–21.

    Article  CAS  PubMed  Google Scholar 

  104. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest. 2012;122(11):4243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shiozawa Y, Eber MR, Berry JE, Taichman RS. Bone marrow as a metastatic niche for disseminated tumor cells from solid tumors. BoneKEy Reports. 2015;4.

  107. Chen X, Armstrong MA, Li G. Mesenchymal stem cells in immunoregulation. Immunol Cell Biol. 2006;84(5):413–21.

    Article  CAS  PubMed  Google Scholar 

  108. Kim SM, Lim JY, Park SI, Jeong CH, Oh JH, Jeong M, et al. Gene therapy using TRAIL-secreting human umbilical cord blood–derived mesenchymal stem cells against intracranial glioma. Cancer Res. 2008;68(23):9614–23.

    Article  CAS  PubMed  Google Scholar 

  109. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371(9624):1579–86.

    Article  CAS  PubMed  Google Scholar 

  110. Serakinci N, Kalkan R, Tulay P. Double-faced role of human mesenchymal stem cells and their role/challenges in cancer therapy. Curr Stem Cell Res Ther. 2016;11(4):343–51.

    Article  CAS  PubMed  Google Scholar 

  111. Reagan MR, Kaplan DL. Concise review: mesenchymal stem cell tumor-homing: detection methods in disease model systems. Stem Cells. 2011;29(6):920–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yong RL, Shinojima N, Fueyo J, Gumin J, Vecil GG, Marini FC, et al. Human bone marrow–derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Δ24-RGD to human gliomas. Cancer Res. 2009;69(23):8932–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kidd S, Caldwell L, Dietrich M, Samudio I, Spaeth EL, Watson K, et al. Mesenchymal stromal cells alone or expressing interferon-β suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy. 2010;12(5):615–25.

    Article  CAS  PubMed  Google Scholar 

  114. Mader EK, Maeyama Y, Lin Y, Butler GW, Russell HM, Galanis E, et al. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res. 2009;15(23):7246–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst. 2004;96(21):1593–603.

    Article  CAS  PubMed  Google Scholar 

  116. Klopp AH, Gupta A, Spaeth E, Andreeff M, Marini F. Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells. 2011;29(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  117. Kalervo Väänänen H. Mesenchymal stem cells. Ann Med. 2005;37(7):469–79.

    Article  PubMed  CAS  Google Scholar 

  118. Bexell D, Gunnarsson S, Tormin A, Darabi A, Gisselsson D, Roybon L, et al. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol Ther. 2009;17(1):183–90.

    Article  CAS  PubMed  Google Scholar 

  119. Houthuijzen J, Daenen L, Roodhart J, Voest E. The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. Br J Cancer. 2012;106(12):1901–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Meads MB, Hazlehurst LA, Dalton WS. The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res. 2008;14(9):2519–26.

    Article  CAS  PubMed  Google Scholar 

  121. Vianello F, Villanova F, Tisato V, Lymperi S, Ho K-K, Gomes AR, et al. Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica. 2010;95(7):1081–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jin L, Tabe Y, Konoplev S, Xu Y, Leysath CE, Lu H, et al. CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol Cancer Ther. 2008;7(1):48–58.

    Article  CAS  PubMed  Google Scholar 

  123. Shahjahani M, Mohammadiasl J, Noroozi F, Seghatoleslami M, Shahrabi S, Saba F, et al. Molecular basis of chronic lymphocytic leukemia diagnosis and prognosis. Cell Oncol. 2015;38(2):93–109.

    Article  CAS  Google Scholar 

  124. Stagg J. Mesenchymal stem cells in cancer. Stem Cell Rev. 2008;4(2):119–24.

    Article  PubMed  Google Scholar 

  125. Balakrishnan K, Burger JA, Quiroga MP, Henneberg M, Ayres ML, Wierda WG, et al. Influence of bone marrow stromal microenvironment on forodesine-induced responses in CLL primary cells. Blood. 2010;116(7):1083–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Priest JR, Ramsay NK, Steinherz PG, Tubergen DG, Cairo MS, Sitarz AL, et al. A syndrome of thrombosis and hemorrhage complicating L-asparaginase therapy for childhood acute lymphoblastic leukemia. J Pediatr. 1982;100(6):984–9.

    Article  CAS  PubMed  Google Scholar 

  127. Priest JR, Ramsay NK, Bennett AJ, Krivit W, Edson JR. The effect of L-asparaginase on antithrombin, plasminogen, and plasma coagulation during therapy for acute lymphoblastic leukemia. J Pediatr. 1982;100(6):990–5.

    Article  CAS  PubMed  Google Scholar 

  128. Iwamoto S, Mihara K, Downing JR, Pui C-H, Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Investig. 2007;117(4):1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ramasamy R, Lam EW, Soeiro I, Tisato V, Bonnet D, Dazzi F. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia. 2007;21(2):304–10.

    Article  CAS  PubMed  Google Scholar 

  130. Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC, et al. Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res. 2008;18(4):500–7.

    Article  CAS  PubMed  Google Scholar 

  131. Cousin B, Ravet E, Poglio S, De Toni F, Bertuzzi M, Lulka H, et al. Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS One. 2009;4(7).

  132. Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res. 2009;69(10):4134–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Loebinger MR, Janes SM. Stem cells as vectors for antitumour therapy. Thorax. 2010;65(4):362–9.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Akimoto K, Kimura K, Nagano M, Takano S, To’a Salazar G, Yamashita T, et al. Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev 2012;22(9):1370–1386.

Download references

Acknowledgments

This paper is issued from the thesis of Fatemeh Norozi, MSc student of hematology and blood banking. This work was financially supported by grant IR. AJUMS. REC. TH94/8 from vice chancellor for Research Affairs of Ahvaz Jundishapur University of Medical Sciences.

Authors’ contributions

N.S. conceived the manuscript and revised it; A.A., F.N., S. Sh. and T.V. wrote the manuscript. F. N and N.S. prepared the figures and tables.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmaldin Saki.

Ethics declarations

Conflict of interest

None.

Additional information

Highlights

• MSCs play a dual role in the growth and survival of tumor cells.

• After homing at tumor sites, MSCs cause increased survival and metastasis of tumor cells.

• MSCs attract tumor cells towards BM and are involved in bone damage and drug resistance.

• Implantation features of MSCs at tumor sites raise them as delivery vehicles for antitumor agents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norozi, F., Ahmadzadeh, A., Shahrabi, S. et al. Mesenchymal stem cells as a double-edged sword in suppression or progression of solid tumor cells. Tumor Biol. 37, 11679–11689 (2016). https://doi.org/10.1007/s13277-016-5187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5187-7

Keywords

Navigation