Skip to main content
Log in

TUSC3 suppresses glioblastoma development by inhibiting Akt signaling

  • Original Article
  • Published:
Tumor Biology

Abstract

Glioblastoma multiform is one of the most common and most aggressive brain tumors in humans. The molecular and cellular mechanisms responsible for the onset and progression of GBM are elusive and controversial. The function of tumor suppressor candidate 3 (TUSC3) has not been previously characterized in GBM. TUSC3 was originally identified as part of an enzyme complex involved in N-glycosylation of proteins, but was recently implicated as a potential tumor suppressor gene in a variety of cancer types. In this study, we demonstrated that the expression levels of TUSC3 were downregulated in both GBM tissues and cells, and also found that overexpression of TUSC3 inhibits GBM cell proliferation and invasion. In addition, the effects of increased levels of methylation on the TUSC3 promoter were responsible for decreased expression of TUSC3 in GBM. Finally, we determined that TUSC3 regulates proliferation and invasion of GBM cells by inhibiting the activity of the Akt signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  CAS  PubMed  Google Scholar 

  2. Uren PJ, Vo DT, de Araujo PR, Potschke R, Burns SC, Bahrami-Samani E, et al. Rna-binding protein musashi1 is a central regulator of adhesion pathways in glioblastoma. Mol Cell Biol. 2015;35:2965–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang K, Zhu S, Liu Y, Dong X, Shi Z, Zhang A, et al. Icat inhibits glioblastoma cell proliferation by suppressing wnt/beta-catenin activity. Cancer Lett. 2015;357:404–11.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang Y, Zhang Q, Bao J, Du C, Wang J, Tong Q, et al. Schisandrin b suppresses glioma cell metastasis mediated by inhibition of mtor/mmp-9 signal pathway. Biomed Pharmacother. 2015;74:77–82.

    Article  CAS  PubMed  Google Scholar 

  5. Jiang L, Wang C, Lei F, Zhang L, Zhang X, Liu A, et al. Mir-93 promotes cell proliferation in gliomas through activation of pi3k/akt signaling pathway. Oncotarget. 2015;6:8286–99.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kelleher DJ, Gilmore R. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology. 2006;16:47R–62.

    Article  CAS  PubMed  Google Scholar 

  7. Kelleher DJ, Karaoglu D, Mandon EC, Gilmore R. Oligosaccharyltransferase isoforms that contain different catalytic stt3 subunits have distinct enzymatic properties. Mol Cell. 2003;12:101–11.

    Article  CAS  PubMed  Google Scholar 

  8. Schulz BL, Stirnimann CU, Grimshaw JP, Brozzo MS, Fritsch F, Mohorko E, et al. Oxidoreductase activity of oligosaccharyltransferase subunits ost3p and ost6p defines site-specific glycosylation efficiency. Proc Natl Acad Sci U S A. 2009;106:11061–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mohorko E, Owen RL, Malojcic G, Brozzo MS, Aebi M, Glockshuber R. Structural basis of substrate specificity of human oligosaccharyl transferase subunit n33/tusc3 and its role in regulating protein n-glycosylation. Structure. 2014;22:590–601.

    Article  CAS  PubMed  Google Scholar 

  10. Garshasbi M, Hadavi V, Habibi H, Kahrizi K, Kariminejad R, Behjati F, et al. A defect in the tusc3 gene is associated with autosomal recessive mental retardation. Am J Hum Genet. 2008;82:1158–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garshasbi M, Kahrizi K, Hosseini M, Nouri Vahid L, Falah M, Hemmati S, et al. A novel nonsense mutation in tusc3 is responsible for non-syndromic autosomal recessive mental retardation in a consanguineous iranian family. Am J Med Genet A. 2011;155A:1976–80.

    Article  PubMed  Google Scholar 

  12. Khan MA, Rafiq MA, Noor A, Ali N, Ali G, Vincent JB, et al. A novel deletion mutation in the tusc3 gene in a consanguineous Pakistani family with autosomal recessive nonsyndromic intellectual disability. BMC Med Genet. 2011;12:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Molinari F, Foulquier F, Tarpey PS, Morelle W, Boissel S, Teague J, et al. Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. Am J Hum Genet. 2008;82:1150–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. El Chehadeh S, Bonnet C, Callier P, Beri M, Dupre T, Payet M, et al. Homozygous truncating intragenic duplication in tusc3 responsible for rare autosomal recessive nonsyndromic intellectual disability with no clinical or biochemical metabolic markers. JIMD Rep. 2015;20:45–55.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang MJ, Xing LX, Cui M, Yang X, Shi JG, Li J, et al. Association of tusc3 gene polymorphisms with non-syndromic mental retardation based on nuclear families in the qinba mountain area of china. Genet Mol Res. 2015;14:5022–30.

    Article  CAS  PubMed  Google Scholar 

  16. Ghadami S, Mohammadi HM, Malbin J, Masoodifard M, Sarhaddi AB, Tavakkoly-Bazzaz J, et al. Frequencies of six (five novel) str markers linked to tusc3 (mrt7) or nsun2 (mrt5) genes used for homozygosity mapping of recessive intellectual disability. Clin Lab. 2015;61:925–32.

    CAS  PubMed  Google Scholar 

  17. Zhou H, Clapham DE. Mammalian magt1 and tusc3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc Natl Acad Sci U S A. 2009;106:15750–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bova GS, MacGrogan D, Levy A, Pin SS, Bookstein R, Isaacs WB. Physical mapping of chromosome 8p22 markers and their homozygous deletion in a metastatic prostate cancer. Genomics. 1996;35:46–54.

    Article  CAS  PubMed  Google Scholar 

  19. MacGrogan D, Levy A, Bova GS, Isaacs WB, Bookstein R. Structure and methylation-associated silencing of a gene within a homozygously deleted region of human chromosome band 8p22. Genomics. 1996;35:55–65.

    Article  CAS  PubMed  Google Scholar 

  20. Horak P, Tomasich E, Vanhara P, Kratochvilova K, Anees M, Marhold M, et al. Tusc3 loss alters the ER stress response and accelerates prostate cancer growth in vivo. Sci Rep. 2014;4:3739.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bashyam MD, Bair R, Kim YH, Wang P, Hernandez-Boussard T, Karikari CA, et al. Array-based comparative genomic hybridization identifies localized DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia. 2005;7:556–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Levy A, Dang UC, Bookstein R. High-density screen of human tumor cell lines for homozygous deletions of loci on chromosome arm 8p. Genes Chromosom Cancer. 1999;24:42–7.

    Article  CAS  PubMed  Google Scholar 

  23. Fan X, Zhang X, Shen J, Zhao H, Yu X, Chen Y, et al. Decreased tusc3 promotes pancreatic cancer proliferation, invasion and metastasis. PLoS One. 2016;11:e0149028.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pils D, Horak P, Gleiss A, Sax C, Fabjani G, Moebus VJ, et al. Five genes from chromosomal band 8p22 are significantly down-regulated in ovarian carcinoma: N33 and efa6r have a potential impact on overall survival. Cancer. 2005;104:2417–29.

    Article  CAS  PubMed  Google Scholar 

  25. Kratochvilova K, Horak P, Esner M, Soucek K, Pils D, Anees M, et al. Tumor suppressor candidate 3 (tusc3) prevents the epithelial-to-mesenchymal transition and inhibits tumor growth by modulating the endoplasmic reticulum stress response in ovarian cancer cells. Int J Cancer. 2015;137:1330–40.

    Article  CAS  PubMed  Google Scholar 

  26. Vanhara P, Horak P, Pils D, Anees M, Petz M, Gregor W, et al. Loss of the oligosaccharyl transferase subunit tusc3 promotes proliferation and migration of ovarian cancer cells. Int J Oncol. 2013;42:1383–9.

    CAS  PubMed  Google Scholar 

  27. Pils D, Horak P, Vanhara P, Anees M, Petz M, Alfanz A, et al. Methylation status of tusc3 is a prognostic factor in ovarian cancer. Cancer. 2013;119:946–54.

    Article  CAS  PubMed  Google Scholar 

  28. Collard JG, Schijven JF, Bikker A, La Riviere G, Bolscher JG, Roos E. Cell surface sialic acid and the invasive and metastatic potential of t-cell hybridomas. Cancer Res. 1986;46:3521–7.

    CAS  PubMed  Google Scholar 

  29. Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta. 1999;1473:21–34.

    Article  CAS  PubMed  Google Scholar 

  30. Yogeeswaran G, Salk PL. Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science. 1981;212:1514–6.

    Article  CAS  PubMed  Google Scholar 

  31. Fang M, Shen Z, Huang S, Zhao L, Chen S, Mak TW, et al. The er udpase entpd5 promotes protein n-glycosylation, the warburg effect, and proliferation in the pten pathway. Cell. 2010;143:711–24.

    Article  CAS  PubMed  Google Scholar 

  32. Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN, Demetriou M, et al. Complex n-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell. 2007;129:123–34.

    Article  CAS  PubMed  Google Scholar 

  33. Kuball J, Hauptrock B, Malina V, Antunes E, Voss RH, Wolfl M, et al. Increasing functional avidity of tcr-redirected t cells by removing defined n-glycosylation sites in the tcr constant domain. J Exp Med. 2009;206:463–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Seales EC, Jurado GA, Singhal A, Bellis SL. Ras oncogene directs expression of a differentially sialylated, functionally altered beta1 integrin. Oncogene. 2003;22:7137–45.

    Article  CAS  PubMed  Google Scholar 

  35. Ahuja N, Li Q, Mohan AL, Baylin SB, Issa JP. Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res. 1998;58:5489–94.

    CAS  PubMed  Google Scholar 

  36. Yuasa Y, Nagasaki H, Oze I, Akiyama Y, Yoshida S, Shitara K, et al. Insulin-like growth factor 2 hypomethylation of blood leukocyte DNA is associated with gastric cancer risk. Int J Cancer. 2012;131:2596–603.

    Article  CAS  PubMed  Google Scholar 

  37. Guo M, Jiang Z, Zhang X, Lu D, Ha AD, Sun J, et al. Mir-656 inhibits glioma tumorigenesis through repression of bmpr1a. Carcinogenesis. 2014;35:1698–706.

    Article  CAS  PubMed  Google Scholar 

  38. Guo M, Zhang X, Wang G, Sun J, Jiang Z, Khadarian K, et al. Mir-603 promotes glioma cell growth via wnt/beta-catenin pathway by inhibiting wif1 and ctnnbip1. Cancer Lett. 2015;360:76–86.

    Article  CAS  PubMed  Google Scholar 

  39. Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD, et al. Functional network analysis reveals extended gliomagenesis pathway maps and three novel myc-interacting genes in human gliomas. Cancer Res. 2005;65:8679–89.

    Article  CAS  PubMed  Google Scholar 

  40. Manning BD, Cantley LC. Akt/pkb signaling: navigating downstream. Cell. 2007;129:1261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang F, Xiao W, Sun J, Han D, Zhu Y. Mirna-181c inhibits egfr-signaling-dependent mmp9 activation via suppressing akt phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.

    Article  CAS  PubMed  Google Scholar 

  42. Hemmings BA. Akt signaling: linking membrane events to life and death decisions. Science. 1997;275:628–30.

    Article  CAS  PubMed  Google Scholar 

  43. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  44. Liu Z, Wang J, Guo C, Fan X. Microrna-21 mediates epithelial-mesenchymal transition of human hepatocytes via pten/akt pathway. Biomed Pharmacother. 2015;69:24–8.

    Article  PubMed  Google Scholar 

  45. Zhao Z, Han F, Yang S, Wu J, Zhan W. Oxamate-mediated inhibition of lactate dehydrogenase induces protective autophagy in gastric cancer cells: involvement of the akt-mtor signaling pathway. Cancer Lett. 2015;358:17–26.

    Article  CAS  PubMed  Google Scholar 

  46. Wang L, Ouyang F, Liu X, Wu S, Wu HM, Xu Y et al. Overexpressed cisd2 has prognostic value in human gastric cancer and promotes gastric cancer cell proliferation and tumorigenesis via akt signaling pathway. Oncotarget 2015. doi: 10.18632.

  47. Liu J, Chen Y, Shuai S, Ding D, Li R, Luo R. Trpm8 promotes aggressiveness of breast cancer cells by regulating emt via activating akt/gsk-3beta pathway. Tumour Biol. 2014;35:8969–77.

    Article  CAS  PubMed  Google Scholar 

  48. Karaoglu D, Kelleher DJ, Gilmore R. Functional characterization of ost3p. Loss of the 34-kd subunit of the saccharomyces cerevisiae oligosaccharyltransferase results in biased underglycosylation of acceptor substrates. J Cell Biol. 1995;130:567–77.

    Article  CAS  PubMed  Google Scholar 

  49. Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A. 2002;99:10231–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kobata A, Amano J. Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol Cell Biol. 2005;83:429–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the International S&T Cooperation Program of China (no. 2014DFA31630), the National Nature Science Foundation of China (nos. 81571646, 81471326, 81500924, 81572472, 81501050, and 81571108), the Specialized Research Fund for the Doctoral Program of Higher Education (no. 20132307110029), the Scientific and Technology Research Fund of the Heilongjiang Education Department (no. 12541469), the Natural Science Foundation of Heilongjiang Province (nos. H201348, H201434, and H2015062), and the Application Technology Research and Development Project of Heilongjiang Province (nos. GA15C108 and GA15C103-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Lin.

Ethics declarations

This study was approved by the institutional review board at Harbin Medical University.

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Guo, M., Zhang, X. et al. TUSC3 suppresses glioblastoma development by inhibiting Akt signaling. Tumor Biol. 37, 12039–12047 (2016). https://doi.org/10.1007/s13277-016-5072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5072-4

Keywords

Navigation