Skip to main content

Advertisement

Log in

MicroRNA-155 promotes apoptosis in SKOV3, A2780, and primary cultured ovarian cancer cells

  • Original Article
  • Published:
Tumor Biology

Abstract

MicroRNAs (miRNAs) are a large group of small non-coding RNAs that can negatively regulate gene expression at the post-transcriptional level. The deregulation of miRNAs has been associated with tumorigenesis, drug resistance, and prognosis in cancers. Deregulated miR-155 has been reported in numerous cancers; however, its function remains unclear. 4′,6-Diamidino-2-phenylindole (DAPI) staining and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) techniques were used to determine the effects of a miR-155 mimic or inhibitor on the apoptotic ratio of ovarian cancer cells induced by cisplatin. Bioinformatic predictions, the dual-luciferase reporter assay, and western blot analysis were used to detect how miR-155 regulates X-linked inhibitor of apoptosis protein (XIAP). We demonstrated that a miR-155 mimic could decrease the IC50 value of cisplatin in SKOV3 ovarian cancer cells. Subsequently, gain- and loss-of-function analyses with a miR-155 mimic and inhibitor showed that miR-155 sensitizes ovarian cancer cells to cisplatin. Furthermore, the results from the luciferase assays and western blot analysis identified XIAP as the direct target of miR-155. In addition, introducing XIAP cDNA without a three prime untranslated region (3′-UTR) rescued the miR-155 promotion of apoptosis. These results indicate that miR-155 mediates cisplatin-induced apoptosis by targeting XIAP in ovarian cancer cells and that miR-155 could be a potential therapeutic target to increase the efficiency of ovarian cancer interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Mei L, Chen H, Wei DM, Fang F, Liu GJ, Xie HY, et al. Maintenance chemotherapy for ovarian cancer. Cochrane Database Syst Rev. 2013;6:CD007414.

    Google Scholar 

  3. Aravantinos G, Pectasides D. Bevacizumab in combination with chemotherapy for the treatment of advanced ovarian cancer: a systematic review. J Ovarian Res. 2014;7:57.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  5. Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006;11:441–50.

    Article  CAS  PubMed  Google Scholar 

  6. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the pten tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133:647–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu WK, Lee CW, Cho CH, Fan D, Wu K, Yu J, et al. MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene. 2010;29:5761–71.

    Article  CAS  PubMed  Google Scholar 

  8. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–70.

    Article  CAS  PubMed  Google Scholar 

  9. Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, et al. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer. 2007;120:1046–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98.

    Article  CAS  PubMed  Google Scholar 

  11. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene. 2006;25:2537–45.

    Article  CAS  PubMed  Google Scholar 

  12. Yu S, Lu Z, Liu C, Meng Y, Ma Y, Zhao W, et al. MiRNA-96 suppresses kras and functions as a tumor suppressor gene in pancreatic cancer. Cancer Res. 2010;70:6015–25.

    Article  CAS  PubMed  Google Scholar 

  13. Cai L, Chen T, Yang J, Zhou K, Yan X, Chen W, et al. Serum trace element differences between schizophrenia patients and controls in the han chinese population. Sci Rep. 2015;5:15013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kong F, Sun C, Wang Z, Han L, Weng D, Lu Y, et al. Mir-125b confers resistance of ovarian cancer cells to cisplatin by targeting pro-apoptotic bcl-2 antagonist killer 1. J Huazhong Univ Sci Technol Med Sci = Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban = Huazhong keji daxue xuebao Yixue Yingdewen ban. 2011;31:543–9.

    Article  CAS  PubMed  Google Scholar 

  15. Yang H, Kong W, He L, Zhao JJ, O'Donnell JD, Wang J, et al. MicroRNA expression profiling in human ovarian cancer: Mir-214 induces cell survival and cisplatin resistance by targeting pten. Cancer Res. 2008;68:425–33.

    Article  CAS  PubMed  Google Scholar 

  16. Tam W, Ben-Yehuda D, Hayward WS. Bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol Cell Biol. 1997;17:1490–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Masaki S, Ohtsuka R, Abe Y, Muta K, Umemura T. Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem Biophys Res Commun. 2007;364:509–14.

    Article  CAS  PubMed  Google Scholar 

  18. Georgantas 3rd RW, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S, et al. Cd34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci U S A. 2007;104:2750–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U S A. 2007;104:1604–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, et al. Accumulation of mir-155 and bic RNA in human b cell lymphomas. Proc Natl Acad Sci U S A. 2005;102:3627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  22. Kong W, He L, Coppola M, Guo J, Esposito NN, Coppola D, et al. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting foxo3a in breast cancer. J Biol Chem. 2010;285:17869–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kong W, He L, Richards EJ, Challa S, Xu CX, Permuth-Wey J, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting vhl and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 2014;33:679–89.

    Article  CAS  PubMed  Google Scholar 

  24. Yu DD, Lv MM, Chen WX, Zhong SL, Zhang XH, Chen L, et al. Role of mir-155 in drug resistance of breast cancer. Tumour Biol. 2015;36:1395–401.

    Article  CAS  PubMed  Google Scholar 

  25. Bakirtzi K, Hatziapostolou M, Karagiannides I, Polytarchou C, Jaeger S, Iliopoulos D, et al. Neurotensin signaling activates microRNAs-21 and -155 and akt, promotes tumor growth in mice, and is increased in human colon tumors. Gastroenterology. 2011;141:1749–61. e1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou J, Wang W, Gao Z, Peng X, Chen X, Chen W, et al. MicroRNA-155 promotes glioma cell proliferation via the regulation of mxi1. PLoS One. 2013;8:e83055.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu Q, Chen J, Wang J, Amos C, Killary AM, Sen S, et al. Putative tumor suppressor gene sel1l was downregulated by aberrantly upregulated hsa-mir-155 in human pancreatic ductal adenocarcinoma. Mol Carcinog. 2014;53:711–21.

    Article  CAS  PubMed  Google Scholar 

  28. Liu WJ, Zhao YP, Zhang TP, Zhou L, Cui QC, Zhou WX, et al. Mlh1 as a direct target of mir-155 and a potential predictor of favorable prognosis in pancreatic cancer. J Gastrointest Surg. 2013;17:1399–405.

    Article  PubMed  Google Scholar 

  29. Du ZM, Hu LF, Wang HY, Yan LX, Zeng YX, Shao JY, et al. Upregulation of mir-155 in nasopharyngeal carcinoma is partly driven by lmp1 and lmp2a and downregulates a negative prognostic marker jmjd1a. PLoS One. 2011;6:e19137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rather MI, Nagashri MN, Swamy SS, Gopinath KS, Kumar A. Oncogenic microRNA-155 down-regulates tumor suppressor cdc73 and promotes oral squamous cell carcinoma cell proliferation: implications for cancer therapeutics. J Biol Chem. 2013;288:608–18.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang C, Zhao J, Deng H. 17beta-estradiol up-regulates mir-155 expression and reduces tp53inp1 expression in mcf-7 breast cancer cells. Mol Cell Biochem. 2013;379:201–11.

    Article  CAS  PubMed  Google Scholar 

  32. Zang YS, Zhong YF, Fang Z, Li B, An J. Mir-155 inhibits the sensitivity of lung cancer cells to cisplatin via negative regulation of apaf-1 expression. Cancer Gene Ther. 2012;19:773–8.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Wei W, Cheng N, Wang K, Li B, Jiang X, et al. Hepatitis c virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating wnt signaling. Hepatology. 2012;56:1631–40.

    Article  CAS  PubMed  Google Scholar 

  34. Levati L, Alvino E, Pagani E, Arcelli D, Caporaso P, Bondanza S, et al. Altered expression of selected microRNAs in melanoma: antiproliferative and proapoptotic activity of miRNA-155. Int J Oncol. 2009;35:393–400.

    CAS  PubMed  Google Scholar 

  35. Li CL, Nie H, Wang M, Su LP, Li JF, Yu YY, et al. MicroRNA-155 is downregulated in gastric cancer cells and involved in cell metastasis. Oncol Rep. 2012;27:1960–6.

    PubMed  Google Scholar 

  36. Qin W, Ren Q, Liu T, Huang Y, Wang J. MicroRNA-155 is a novel suppressor of ovarian cancer-initiating cells that targets cldn1. FEBS Lett. 2013;587:1434–9.

    Article  CAS  PubMed  Google Scholar 

  37. Rajcan-Separovic E, Liston P, Lefebvre C, Korneluk RG. Assignment of human inhibitor of apoptosis protein (iap) genes xiap, hiap-1, and hiap-2 to chromosomes xq25 and 11q22-q23 by fluorescence in situ hybridization. Genomics. 1996;37:404–6.

    Article  CAS  PubMed  Google Scholar 

  38. Wagenknecht B, Glaser T, Naumann U, Kugler S, Isenmann S, Bahr M, et al. Expression and biological activity of x-linked inhibitor of apoptosis (xiap) in human malignant glioma. Cell Death Differ. 1999;6:370–6.

    Article  CAS  PubMed  Google Scholar 

  39. Perkins C, Kim CN, Fang G, Bhalla KN. Overexpression of apaf-1 promotes apoptosis of untreated and paclitaxel- or etoposide-treated hl-60 cells. Cancer Res. 1998;58:4561–6.

    CAS  PubMed  Google Scholar 

  40. Kitada S, Zapata JM, Andreeff M, Reed JC. Protein kinase inhibitors flavopiridol and 7-hydroxy-staurosporine down-regulate antiapoptosis proteins in b-cell chronic lymphocytic leukemia. Blood. 2000;96:393–7.

    CAS  PubMed  Google Scholar 

  41. Peng XH, Karna P, O'Regan RM, Liu X, Naithani R, Moriarty RM, et al. Down-regulation of inhibitor of apoptosis proteins by deguelin selectively induces apoptosis in breast cancer cells. Mol Pharmacol. 2007;71:101–11.

    Article  CAS  PubMed  Google Scholar 

  42. Pang Y, Mao H, Shen L, Zhao Z, Liu R, Liu P. Mir-519d represses ovarian cancer cell proliferation and enhances cisplatin-mediated cytotoxicity in vitro by targeting xiap. Onco Targets Ther. 2014;7:587–97.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li J, Sasaki H, Sheng YL, Schneiderman D, Xiao CW, Kotsuji F, et al. Apoptosis and chemoresistance in human ovarian cancer: is xiap a determinant? Biol Signals Recept. 2000;9:122–30.

    Article  CAS  PubMed  Google Scholar 

  44. Kamsteeg M, Rutherford T, Sapi E, Hanczaruk B, Shahabi S, Flick M, et al. Phenoxodiol—an isoflavone analog—induces apoptosis in chemoresistant ovarian cancer cells. Oncogene. 2003;22:2611–20.

    Article  CAS  PubMed  Google Scholar 

  45. Sapi E, Alvero AB, Chen W, O'Malley D, Hao XY, Dwipoyono B, et al. Resistance of ovarian carcinoma cells to docetaxel is xiap dependent and reversible by phenoxodiol. Oncol Res. 2004;14:567–78.

    CAS  PubMed  Google Scholar 

  46. Dan HC, Sun M, Kaneko S, Feldman RI, Nicosia SV, Wang HG, et al. Akt phosphorylation and stabilization of x-linked inhibitor of apoptosis protein (xiap). J Biol Chem. 2004;279:5405–12.

    Article  CAS  PubMed  Google Scholar 

  47. Shaw TJ, Lacasse EC, Durkin JP, Vanderhyden BC. Downregulation of xiap expression in ovarian cancer cells induces cell death in vitro and in vivo. Int J Cancer. 2008;122:1430–4.

    Article  CAS  PubMed  Google Scholar 

  48. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta c(t)) method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  49. Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, et al. Bic and mir-155 are highly expressed in hodgkin, primary mediastinal and diffuse large b cell lymphomas. J Pathol. 2005;207:243–9.

    Article  CAS  PubMed  Google Scholar 

  50. Habbe N, Koorstra J-BM, Mendell JT, Offerhaus GJ, Ryu JK, Feldmann G, et al. MicroRNA mir-155 is a biomarker of early pancreatic neoplasia. Cancer Biol Ther. 2014;8:340–6.

    Article  Google Scholar 

  51. Dahiya N, Sherman-Baust CA, Wang TL, Davidson B, Shih Ie M, Zhang Y, et al. MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS One. 2008;3:e2436.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, et al. Expression and prognostic significance of iap-family genes in human cancers and myeloid leukemias. Clin Cancer Res. 2000;6:1796–803.

    CAS  PubMed  Google Scholar 

  53. Dean EJ, Ward T, Pinilla C, Houghten R, Welsh K, Makin G, et al. A small molecule inhibitor of xiap induces apoptosis and synergises with vinorelbine and cisplatin in nsclc. Br J Cancer. 2010;102:97–103.

    Article  CAS  PubMed  Google Scholar 

  54. Ruckert F, Samm N, Lehner AK, Saeger HD, Grutzmann R, Pilarsky C. Simultaneous gene silencing of bcl-2, xiap and survivin re-sensitizes pancreatic cancer cells towards apoptosis. BMC Cancer. 2010;10:379.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Qu Y, Xia P, Zhang S, Pan S, Zhao J. Silencing xiap suppresses osteosarcoma cell growth, and enhances the sensitivity of osteosarcoma cells to doxorubicin and cisplatin. Oncol Rep. 2015;33:1177–84.

    CAS  PubMed  Google Scholar 

  56. Shin S, Moon KC, Park KU, Ha E. MicroRNA-513a-5p mediates tnf-alpha and lps induced apoptosis via downregulation of x-linked inhibitor of apoptotic protein in endothelial cells. Biochimie. 2012;94:1431–6.

    Article  CAS  PubMed  Google Scholar 

  57. Zhu W, Zhu D, Lu S, Wang T, Wang J, Jiang B, et al. Mir-497 modulates multidrug resistance of human cancer cell lines by targeting bcl2. Med Oncol. 2012;29:384–91.

    Article  CAS  PubMed  Google Scholar 

  58. Zhu DX, Zhu W, Fang C, Fan L, Zou ZJ, Wang YH, et al. Mir-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis. 2012;33:1294–301.

    Article  CAS  PubMed  Google Scholar 

  59. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.

    Article  Google Scholar 

  60. Reles A, Wen WH, Schmider A, Gee C, Runnebaum IB, Kilian U, et al. Correlation of p53 mutations with resistance to platinum-based chemotherapy and shortened survival in ovarian cancer. Clin Cancer Res : Off J Am Assoc Cancer Res. 2001;7:2984–97.

    CAS  Google Scholar 

  61. Swisher EM, Sakai W, Karlan BY, Wurz K, Urban N, Taniguchi T. Secondary brca1 mutations in brca1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 2008;68:2581–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu Y, Xiao Y, Ding X, Zhuo Y, Ren P, Zhou C, et al. A mir-200b/200c/429-binding site polymorphism in the 3′ untranslated region of the ap-2alpha gene is associated with cisplatin resistance. PLoS One. 2011;6:e29043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mishra PJ, Humeniuk R, Mishra PJ, Longo-Sorbello GS, Banerjee D, Bertino JR. A mir-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci U S A. 2007;104:13513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (grant nos. 81101960 and 81572567), the Natural Science Foundation of Guangdong Province (grant no. S2013010012170), the Shenzhen Municipal Government of China (grant no. LXRY20121106142947958), and the Laboratory Opening Fund of Sun Yat-sen University (grant no. KF201329).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chen, Zheng Chen or Yuanli He.

Ethics declarations

Conflicts of interest

None

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Huang, L., Hao, C. et al. MicroRNA-155 promotes apoptosis in SKOV3, A2780, and primary cultured ovarian cancer cells. Tumor Biol. 37, 9289–9299 (2016). https://doi.org/10.1007/s13277-016-4804-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4804-9

Keywords

Navigation