Skip to main content

Advertisement

Log in

Fusobacterium nucleatum, inflammation, and immunity: the fire within human gut

  • Review
  • Published:
Tumor Biology

Abstract

Fusobacterium nucleatum is an identified proinflammatory autochthonous bacterium implicated in human colorectal cancer. It is also abundantly found in patients suffering from chronic gut inflammation (inflammatory bowel disease), consequently contributing to the pathogenesis of colorectal cancer. Majority of the studies have reported that colorectal tumors/colorectal adenocarcinomas are highly enriched with F. nucleatum compared to noninvolved adjacent colonic tissue. During the course of multistep development of colorectal cancer, tumors have evolved many mechanisms to resist the antitumor immune response. One of such favorite ploy is providing access to pathogenic bacteria, especially F. nucleatum in the colorectal tumor microenvironment, wherein both (colorectal tumors and F. nucleatum) exert profound effect on each other, consequently attracting tumor-permissive myeloid-derived suppressor cells, suppressing cytotoxic CD8+ T cells and inhibiting NK cell-mediated cancer cell killing. In this review, we have primarily focused on how this bug modulates the immune response, consequently rendering the antitumor immune cells inactive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kostic AD et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14(2):207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rubinstein MR et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tahara T et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 2014;74(5):1311–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15(3):317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bashir A et al. Fusobacterium nucleatum: an emerging bug in colorectal tumorigenesis. Eur J Cancer Prev. 2015;24(5):373–85.

    Article  CAS  PubMed  Google Scholar 

  6. Tjalsma H et al. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012;10(8):575–82.

    Article  CAS  PubMed  Google Scholar 

  7. Ford AC, Moayyedi P, Hanauer SB. Ulcerative colitis. BMJ. 2013;346:f432.

    Article  PubMed  Google Scholar 

  8. Yang T et al. Microbiota impact on the epigenetic regulation of colorectal cancer. Trends Mol Med. 2013;19(12):714–25.

    Article  CAS  PubMed  Google Scholar 

  9. Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol. 2012;10(6):639–45.

    Article  PubMed  Google Scholar 

  10. Couturier-Maillard A et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 2013;123(2):700–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jostins L et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gevers D et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe. 2014;15(3):382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146(6):1489–99. doi:10.1053/j.gastro.2014.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Minot S et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011;21(10):1616–25. doi:10.1101/gr.122705.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Norman JM, Handley SA, Virgin HW. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology. 2014;146(6):1459–69. doi:10.1053/j.gastro.2014.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Virgin HW. The virome in mammalian physiology and disease. Cell. 2014;157(1):142–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cario E. Microbiota and innate immunity in intestinal inflammation and neoplasia. Curr Opin Gastroenterol. 2013;29(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  19. Sansone P, Bromberg J. Environment, inflammation, and cancer. Curr Opin Genet Dev. 2011;21(1):80–5.

    Article  CAS  PubMed  Google Scholar 

  20. Liu H, Redline RW, Han YW. Fusobacterium nucleatum induces fetal death in mice via stimulation of TLR4-mediated placental inflammatory response. J Immunol. 2007;179(4):2501–8.

    Article  CAS  PubMed  Google Scholar 

  21. Swidsinski A et al. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut. 2011;60(1):34–40.

    Article  PubMed  Google Scholar 

  22. Irrazabal T et al. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell. 2014;54(2):309–20.

    Article  CAS  PubMed  Google Scholar 

  23. McCoy AN et al. Fusobacterium is associated with colorectal adenomas. PLoS One. 2013;8(1):e53653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dharmani P et al. Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha. Infect Immun. 2011;79(7):2597–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Castellarin M et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kostic AD et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marchesi JR et al. Towards the human colorectal cancer microbiome. PLoS One. 2011;6(5):e20447. doi:10.1371/journal.pone.0020447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Strauss J et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm Bowel Dis. 2011;17(9):1971–8.

    Article  PubMed  Google Scholar 

  29. Kostic AD et al. Microbes and inflammation in colorectal cancer. Cancer Immunol Res. 2013;1(3):150–7.

    Article  CAS  PubMed  Google Scholar 

  30. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mima K et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 2015;1(5):653–61.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Moretta L et al. Human natural killer cells: origin, clonality, specificity, and receptors. Adv Immunol. 1994;55:341–80.

    Article  CAS  PubMed  Google Scholar 

  33. Levin AM et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature. 2012;484(7395):529–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koch J et al. Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol. 2013;34(4):182–91. doi:10.1016/j.it.2013.01.003.

    Article  CAS  PubMed  Google Scholar 

  35. Seidel E, Glasner A, Mandelboim O. Virus-mediated inhibition of natural cytotoxicity receptor recognition. Cell Mol Life Sci. 2012;69(23):3911–20. doi:10.1007/s00018-012-1001-x.

    Article  CAS  PubMed  Google Scholar 

  36. Gur C et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42(2):344–55. doi:10.1016/j.immuni.2015.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  38. Kalos M, June CH. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity. 2013;39(1):49–60.

    Article  CAS  PubMed  Google Scholar 

  39. Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity. 2013;39(1):38–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van den Boorn JG, Hartmann G. Turning tumors into vaccines: co-opting the innate immune system. Immunity. 2013;39(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  41. Crespo J et al. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25(2):214–21. doi:10.1016/j.coi.2012.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014;35(2):51–60. doi:10.1016/j.it.2013.10.001.

    Article  CAS  PubMed  Google Scholar 

  43. Johnston RJ et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 2014;26(6):923–37. doi:10.1016/j.ccell.2014.10.018.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by University of Kashmir, Srinagar. The contributions made by Mudassir Habib, Samirul Bashir, and Nazia Hilal from the Department of Biotechnology, University of Kashmir are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Majid Fazili.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, A., Miskeen, A.Y., Hazari, Y.M. et al. Fusobacterium nucleatum, inflammation, and immunity: the fire within human gut. Tumor Biol. 37, 2805–2810 (2016). https://doi.org/10.1007/s13277-015-4724-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4724-0

Keywords

Navigation