Skip to main content

Advertisement

Log in

Virus-mediated inhibition of natural cytotoxicity receptor recognition

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells are a part of the innate immune system that functions mainly to kill transformed and infected cells. Their activity is controlled by signals derived from a panel of activating and inhibitory receptors. The natural cytotoxicity receptors (NCRs): NKp30, NKp44, and NKp46 (NCR1 in mice) are prominent among the activating NK cell receptors and they are, notably, the only NK-activating receptors that are able to recognize pathogen-derived ligands. In addition, the NCRs also recognize cellular ligands, the identity of which remains largely unknown. In this review, we summarize the current knowledge regarding viruses that are recognized by the NCRs, focusing on the diverse immune-evasion mechanisms employed by viruses to escape this detection. We also discuss the unique role the NCRs have in regulating NK cell activity with particular emphasis on the in vivo function of NKp46/NCR1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

DC:

Dendritic cell

HA:

Hemagglutinin

HCMV:

Human cytomegalovirus

HCV:

Hepatitis C virus

HIV-1:

Human immunodeficiency virus 1

HN:

Hemagglutinin-neuraminidase

HSV-1:

Herpes simplex virus type 1

ITAM:

Immunoreceptor tyrosine-based activating motif

ITIM:

Immunoreceptor tyrosine-based inhibitory motif

IV:

Influenza virus

KIR:

Killer immunoglobulin-like receptor

MHC:

Major histocompatibility complex

NCR:

Natural cytotoxicity receptor

NK:

Natural killer

PBL:

Peripheral blood leukocytes

PV:

Poxvirus

References

  1. Cheent K, Khakoo SI (2009) Natural killer cells: integrating diversity with function. Immunology 126(4):449–457

    Article  PubMed  CAS  Google Scholar 

  2. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9(5):503–510. doi:10.1038/ni1582

    Article  PubMed  CAS  Google Scholar 

  3. Biassoni R, Cantoni C, Pende D, Sivori S, Parolini S, Vitale M, Bottino C, Moretta A (2001) Human natural killer cell receptors and co-receptors. Immunol Rev 181:203–214

    Article  PubMed  CAS  Google Scholar 

  4. Arnon TI, Markel G, Mandelboim O (2006) Tumor and viral recognition by natural killer cells receptors. Semin Cancer Biol 16(5):348–358. doi:10.1016/j.semcancer.2006.07.005

    Article  PubMed  CAS  Google Scholar 

  5. Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SE, Yagita H, Takeda K, van Dommelen SL, Degli-Esposti MA, Hayakawa Y (2005) Activation of NK cell cytotoxicity. Mol Immunol 42(4):501–510. doi:10.1016/j.molimm.2004.07.034

    Article  PubMed  CAS  Google Scholar 

  6. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274. doi:10.1146/annurev.immunol.23.021704.115526

    Article  PubMed  CAS  Google Scholar 

  7. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220. doi:10.1146/annurev.immunol.17.1.189

    Article  PubMed  CAS  Google Scholar 

  8. Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R, Moretta L (2001) Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 19:197–223

    Article  PubMed  CAS  Google Scholar 

  9. Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9(5):495–502

    Article  PubMed  CAS  Google Scholar 

  10. Ljunggren HG, Karre K (1990) In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol Today 11(7):237–244

    Article  PubMed  CAS  Google Scholar 

  11. Bottino C, Castriconi R, Moretta L, Moretta A (2005) Cellular ligands of activating NK receptors. Trends Immunol 26(4):221–226. doi:10.1016/j.it.2005.02.007

    Article  PubMed  CAS  Google Scholar 

  12. Raulet DH, Vance RE, McMahon CW (2001) Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol 19:291–330

    Article  PubMed  CAS  Google Scholar 

  13. Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, Marcenaro E, Accame L, Malaspina A, Biassoni R, Bottino C, Moretta L, Moretta A (1999) Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med 190(10):1505–1516

    Article  PubMed  CAS  Google Scholar 

  14. Pessino A, Sivori S, Bottino C, Malaspina A, Morelli L, Moretta L, Biassoni R, Moretta A (1998) Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J Exp Med 188(5):953–960

    Article  PubMed  CAS  Google Scholar 

  15. Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E, Augugliaro R, Moretta L, Moretta A (1998) NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med 187(12):2065–2072

    Article  PubMed  CAS  Google Scholar 

  16. Cantoni C, Bottino C, Vitale M, Pessino A, Augugliaro R, Malaspina A, Parolini S, Moretta L, Moretta A, Biassoni R (1999) NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel member of the immunoglobulin superfamily. J Exp Med 189(5):787–796

    Article  PubMed  CAS  Google Scholar 

  17. Joyce MG, Sun PD (2011) The structural basis of ligand recognition by natural killer cell receptors. J Biomed Biotechnol 2011, art ID 203628

  18. Mandelboim O, Lieberman N, Lev M, Paul L, Arnon TI, Bushkin Y, Davis DM, Strominger JL, Yewdell JW, Porgador A (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409(6823):1055–1060

    Article  PubMed  CAS  Google Scholar 

  19. Jarahian M, Watzl C, Fournier P, Arnold A, Djandji D, Zahedi S, Cerwenka A, Paschen A, Schirrmacher V, Momburg F (2009) Activation of natural killer cells by Newcastle disease virus hemagglutinin-neuraminidase. J Virol 83(16):8108–8121

    Article  PubMed  CAS  Google Scholar 

  20. Jarahian M, Fiedler M, Cohnen A, Djandji D, Hammerling GJ, Gati C, Cerwenka A, Turner PC, Moyer RW, Watzl C, Hengel H, Momburg F (2011) Modulation of NKp30- and NKp46-mediated natural killer cell responses by poxviral hemagglutinin. PLoS Pathog 7(8):e1002195

    Article  PubMed  CAS  Google Scholar 

  21. Hershkovitz O, Rosental B, Rosenberg LA, Navarro-Sanchez ME, Jivov S, Zilka A, Gershoni-Yahalom O, Brient-Litzler E, Bedouelle H, Ho JW, Campbell KS, Rager-Zisman B, Despres P, Porgador A (2009) NKp44 receptor mediates interaction of the envelope glycoproteins from the West Nile and dengue viruses with NK cells. J Immunol 183(4):2610–2621

    Article  PubMed  CAS  Google Scholar 

  22. Arnon TI, Achdout H, Levi O, Markel G, Saleh N, Katz G, Gazit R, Gonen-Gross T, Hanna J, Nahari E, Porgador A, Honigman A, Plachter B, Mevorach D, Wolf DG, Mandelboim O (2005) Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nat Immunol 6(5):515–523

    Article  PubMed  CAS  Google Scholar 

  23. Vankayalapati R, Wizel B, Weis SE, Safi H, Lakey DL, Mandelboim O, Samten B, Porgador A, Barnes PF (2002) The NKp46 receptor contributes to NK cell lysis of mononuclear phagocytes infected with an intracellular bacterium. J Immunol 168(7):3451–3457

    PubMed  CAS  Google Scholar 

  24. Chaushu S, Wilensky A, Gur C, Shapira L, Elboim M, Halftek G, Polak D, Achdout H, Bachrach G, Mandelboim O (2012) Direct Recognition of Fusobacterium nucleatum by the NK Cell Natural Cytotoxicity Receptor NKp46 Aggravates Periodontal Disease. PLoS Pathog 8(3):e1002601. doi:10.1371/journal.ppat.1002601

    Article  PubMed  CAS  Google Scholar 

  25. Arnon TI, Achdout H, Lieberman N, Gazit R, Gonen-Gross T, Katz G, Bar-Ilan A, Bloushtain N, Lev M, Joseph A, Kedar E, Porgador A, Mandelboim O (2004) The mechanisms controlling the recognition of tumor- and virus-infected cells by NKp46. Blood 103(2):664–672

    Article  PubMed  CAS  Google Scholar 

  26. Gur C, Enk J, Kassem SA, Suissa Y, Magenheim J, Stolovich-Rain M, Nir T, Achdout H, Glaser B, Shapiro J, Naparstek Y, Porgador A, Dor Y, Mandelboim O (2011) Recognition and killing of human and murine pancreatic beta cells by the NK receptor NKp46. J Immunol 187(6):3096–3103

    Article  PubMed  CAS  Google Scholar 

  27. Gur C, Porgador A, Elboim M, Gazit R, Mizrahi S, Stern-Ginossar N, Achdout H, Ghadially H, Dor Y, Nir T, Doviner V, Hershkovitz O, Mendelson M, Naparstek Y, Mandelboim O (2010) The activating receptor NKp46 is essential for the development of type 1 diabetes. Nat Immunol 11(2):121–128

    Article  PubMed  CAS  Google Scholar 

  28. Gur C, Doron S, Kfir-Erenfeld S, Horwitz E, Abu-Tair L, Safadi R, Mandelboim O (2011) NKp46-mediated killing of human and mouse hepatic stellate cells attenuates liver fibrosis. Gut. doi:10.1136/gutjnl-2011-301400

    PubMed  Google Scholar 

  29. Esin S, Batoni G, Counoupas C, Stringaro A, Brancatisano FL, Colone M, Maisetta G, Florio W, Arancia G, Campa M (2008) Direct binding of human NK cell natural cytotoxicity receptor NKp44 to the surfaces of mycobacteria and other bacteria. Infect Immun 76(4):1719–1727

    Article  PubMed  CAS  Google Scholar 

  30. Rosental B, Brusilovsky M, Hadad U, Oz D, Appel MY, Afergan F, Yossef R, Rosenberg LA, Aharoni A, Cerwenka A, Campbell KS, Braiman A, Porgador A (2011) Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44. J Immunol 187(11):5693–5702

    Article  PubMed  CAS  Google Scholar 

  31. Costello RT, Sivori S, Marcenaro E, Lafage-Pochitaloff M, Mozziconacci MJ, Reviron D, Gastaut JA, Pende D, Olive D, Moretta A (2002) Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 99(10):3661–3667

    Article  PubMed  CAS  Google Scholar 

  32. Sivori S, Pende D, Bottino C, Marcenaro E, Pessino A, Biassoni R, Moretta L, Moretta A (1999) NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells. Eur J Immunol 29(5):1656–1666

    Article  PubMed  CAS  Google Scholar 

  33. Nowbakht P, Ionescu MC, Rohner A, Kalberer CP, Rossy E, Mori L, Cosman D, De Libero G, Wodnar-Filipowicz A (2005) Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 105(9):3615–3622

    Article  PubMed  CAS  Google Scholar 

  34. Magri G, Muntasell A, Romo N, Saez-Borderias A, Pende D, Geraghty DE, Hengel H, Angulo A, Moretta A, Lopez-Botet M (2011) NKp46 and DNAM-1 NK-cell receptors drive the response to human cytomegalovirus-infected myeloid dendritic cells overcoming viral immune evasion strategies. Blood 117(3):848–856

    Article  PubMed  CAS  Google Scholar 

  35. Romo N, Magri G, Muntasell A, Heredia G, Baia D, Angulo A, Guma M, Lopez-Botet M (2011) Natural killer cell-mediated response to human cytomegalovirus-infected macrophages is modulated by their functional polarization. J Leukoc Biol 90(4):717–726

    Article  PubMed  CAS  Google Scholar 

  36. Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Munz C (2002) Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195(3):343–351

    Article  PubMed  CAS  Google Scholar 

  37. Elhaik-Goldman S, Kafka D, Yossef R, Hadad U, Elkabets M, Vallon-Eberhard A, Hulihel L, Jung S, Ghadially H, Braiman A, Apte RN, Mandelboim O, Dagan R, Mizrachi-Nebenzahl Y, Porgador A (2011) The natural cytotoxicity receptor 1 contribution to early clearance of Streptococcus pneumoniae and to natural killer-macrophage cross talk. PLoS ONE 6(8):e23472. doi:10.1371/journal.pone.0023472

    Article  PubMed  CAS  Google Scholar 

  38. Mavoungou E, Held J, Mewono L, Kremsner PG (2007) A Duffy binding-like domain is involved in the NKp30-mediated recognition of Plasmodium falciparum-parasitized erythrocytes by natural killer cells. J Infect Dis 195(10):1521–1531

    Article  PubMed  CAS  Google Scholar 

  39. Pogge von Strandmann E, Simhadri VR, von Tresckow B, Sasse S, Reiners KS, Hansen HP, Rothe A, Boll B, Simhadri VL, Borchmann P, McKinnon PJ, Hallek M, Engert A (2007) Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity 27(6):965–974

    Article  PubMed  CAS  Google Scholar 

  40. Simhadri VR, Reiners KS, Hansen HP, Topolar D, Simhadri VL, Nohroudi K, Kufer TA, Engert A, Pogge von Strandmann E (2008) Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function. PLoS ONE 3(10):e3377

    Article  PubMed  Google Scholar 

  41. Brandt CS, Baratin M, Yi EC, Kennedy J, Gao Z, Fox B, Haldeman B, Ostrander CD, Kaifu T, Chabannon C, Moretta A, West R, Xu W, Vivier E, Levin SD (2009) The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp Med 206(7):1495–1503

    Article  PubMed  CAS  Google Scholar 

  42. Li Y, Wang Q, Mariuzza RA (2011) Structure of the human activating natural cytotoxicity receptor NKp30 bound to its tumor cell ligand B7-H6. J Exp Med 208(4):703–714

    Article  PubMed  CAS  Google Scholar 

  43. Kaifu T, Escaliere B, Gastinel LN, Vivier E, Baratin M (2011) B7-H6/NKp30 interaction: a mechanism of alerting NK cells against tumors. Cell Mol Life Sci 68(21):3531–3539

    Article  PubMed  CAS  Google Scholar 

  44. Bloushtain N, Qimron U, Bar-Ilan A, Hershkovitz O, Gazit R, Fima E, Korc M, Vlodavsky I, Bovin NV, Porgador A (2004) Membrane-associated heparan sulfate proteoglycans are involved in the recognition of cellular targets by NKp30 and NKp46. J Immunol 173(4):2392–2401

    PubMed  CAS  Google Scholar 

  45. Hecht ML, Rosental B, Horlacher T, Hershkovitz O, De Paz JL, Noti C, Schauer S, Porgador A, Seeberger PH (2009) Natural cytotoxicity receptors NKp30, NKp44 and NKp46 bind to different heparan sulfate/heparin sequences. J Proteome Res 8(2):712–720

    Article  PubMed  CAS  Google Scholar 

  46. Hershkovitz O, Jarahian M, Zilka A, Bar-Ilan A, Landau G, Jivov S, Tekoah Y, Glicklis R, Gallagher JT, Hoffmann SC, Zer H, Mandelboim O, Watzl C, Momburg F, Porgador A (2008) Altered glycosylation of recombinant NKp30 hampers binding to heparan sulfate: a lesson for the use of recombinant immunoreceptors as an immunological tool. Glycobiology 18(1):28–41

    Article  PubMed  CAS  Google Scholar 

  47. Ito K, Higai K, Sakurai M, Shinoda C, Yanai K, Azuma Y, Matsumoto K (2011) Binding of natural cytotoxicity receptor NKp46 to sulfate- and alpha2,3-NeuAc-containing glycans and its mutagenesis. Biochem Biophys Res Commun 406(3):377–382. doi:10.1016/j.bbrc.2011.02.050

    Article  PubMed  CAS  Google Scholar 

  48. Ito K, Higai K, Shinoda C, Sakurai M, Yanai K, Azuma Y, Matsumoto K (2012) Unlike Natural Killer (NK) p30, Natural Cytotoxicity Receptor NKp44 Binds to Multimeric alpha2,3-NeuNAc-Containing N-Glycans. Biol Pharm Bull 35(4):594–600 pii:JST.JSTAGE/bpb/35.594

    Article  PubMed  CAS  Google Scholar 

  49. Arnon TI, Lev M, Katz G, Chernobrov Y, Porgador A, Mandelboim O (2001) Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur J Immunol 31(9):2680–2689

    Article  PubMed  CAS  Google Scholar 

  50. Achdout H, Meningher T, Hirsh S, Glasner A, Bar-On Y, Gur C, Porgador A, Mendelson M, Mandelboim M, Mandelboim O (2010) Killing of avian and Swine influenza virus by natural killer cells. J Virol 84(8):3993–4001

    Article  PubMed  CAS  Google Scholar 

  51. Mendelson M, Tekoah Y, Zilka A, Gershoni-Yahalom O, Gazit R, Achdout H, Bovin NV, Meningher T, Mandelboim M, Mandelboim O, David A, Porgador A (2010) NKp46 O-glycan sequences that are involved in the interaction with hemagglutinin type 1 of influenza virus. J Virol 84(8):3789–3797

    Article  PubMed  CAS  Google Scholar 

  52. Gazit R, Gruda R, Elboim M, Arnon TI, Katz G, Achdout H, Hanna J, Qimron U, Landau G, Greenbaum E, Zakay-Rones Z, Porgador A, Mandelboim O (2006) Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7(5):517–523. doi:10.1038/ni1322

    Article  PubMed  CAS  Google Scholar 

  53. Narni-Mancinelli E, Jaeger BN, Bernat C, Fenis A, Kung S, De Gassart A, Mahmood S, Gut M, Heath SC, Estelle J, Bertosio E, Vely F, Gastinel LN, Beutler B, Malissen B, Malissen M, Gut IG, Vivier E, Ugolini S (2012) Tuning of natural killer cell reactivity by NKp46 and Helios calibrates T cell responses. Science 335(6066):344–348. doi:10.1126/science.1215621

    Article  PubMed  CAS  Google Scholar 

  54. Babic M, Pyzik M, Zafirova B, Mitrovic M, Butorac V, Lanier LL, Krmpotic A, Vidal SM, Jonjic S (2010) Cytomegalovirus immunoevasin reveals the physiological role of “missing self” recognition in natural killer cell dependent virus control in vivo. J Exp Med 207(12):2663–2673. doi:10.1084/jem.20100921

    Article  PubMed  CAS  Google Scholar 

  55. Lakshmikanth T, Burke S, Ali TH, Kimpfler S, Ursini F, Ruggeri L, Capanni M, Umansky V, Paschen A, Sucker A, Pende D, Groh V, Biassoni R, Hoglund P, Kato M, Shibuya K, Schadendorf D, Anichini A, Ferrone S, Velardi A, Karre K, Shibuya A, Carbone E, Colucci F (2009) NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J Clin Invest 119(5):1251–1263. doi:10.1172/JCI36022

    Article  PubMed  CAS  Google Scholar 

  56. Glasner A, Ghadially H, Gur C, Stanietsky N, Tsukerman P, Enk J, Mandelboim O (2012) Recognition and prevention of tumor metastasis by the NK receptor NKp46/NCR1. J Immunol 188(6):2509–2515. doi:10.4049/jimmunol.1102461

    Article  PubMed  CAS  Google Scholar 

  57. Mao H, Tu W, Liu Y, Qin G, Zheng J, Chan PL, Lam KT, Peiris JS, Lau YL (2010) Inhibition of human natural killer cell activity by influenza virions and hemagglutinin. J Virol 84(9):4148–4157

    Article  PubMed  CAS  Google Scholar 

  58. Chisholm SE, Reyburn HT (2006) Recognition of vaccinia virus-infected cells by human natural killer cells depends on natural cytotoxicity receptors. J Virol 80(5):2225–2233

    Article  PubMed  CAS  Google Scholar 

  59. Chisholm SE, Howard K, Gomez MV, Reyburn HT (2007) Expression of ICP0 is sufficient to trigger natural killer cell recognition of herpes simplex virus-infected cells by natural cytotoxicity receptors. J Infect Dis 195(8):1160–1168

    Article  PubMed  CAS  Google Scholar 

  60. Sowrirajan B, Barker E (2011) The natural killer cell cytotoxic function is modulated by HIV-1 accessory proteins. Viruses 3(7):1091–1111

    Article  PubMed  CAS  Google Scholar 

  61. Ward J, Bonaparte M, Sacks J, Guterman J, Fogli M, Mavilio D, Barker E (2007) HIV modulates the expression of ligands important in triggering natural killer cell cytotoxic responses on infected primary T-cell blasts. Blood 110(4):1207–1214

    Article  PubMed  CAS  Google Scholar 

  62. Vieillard V, Strominger JL, Debre P (2005) NK cytotoxicity against CD4+ T cells during HIV-1 infection: a gp41 peptide induces the expression of an NKp44 ligand. Proc Nat Acad Sci USA 102(31):10981–10986

    Article  PubMed  CAS  Google Scholar 

  63. Fausther-Bovendo H, Vieillard V, Sagan S, Bismuth G, Debre P (2010) HIV gp41 engages gC1qR on CD4+ T cells to induce the expression of an NK ligand through the PIP3/H2O2 pathway. PLoS Pathog 6:e1000975

    Article  PubMed  Google Scholar 

  64. Fausther-Bovendo H, Sol-Foulon N, Candotti D, Agut H, Schwartz O, Debre P, Vieillard V (2009) HIV escape from natural killer cytotoxicity: nef inhibits NKp44L expression on CD4+ T cells. AIDS (London, England) 23(9):1077–1087

    Google Scholar 

  65. De Maria A, Fogli M, Costa P, Murdaca G, Puppo F, Mavilio D, Moretta A, Moretta L (2003) The impaired NK cell cytolytic function in viremic HIV-1 infection is associated with a reduced surface expression of natural cytotoxicity receptors (NKp46, NKp30 and NKp44). Eur J Immunol 33(9):2410–2418

    Article  PubMed  Google Scholar 

  66. Cheent K, Khakoo SI (2011) Natural killer cells and hepatitis C: action and reaction. Gut 60(2):268–278

    Article  PubMed  CAS  Google Scholar 

  67. Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X, Astemborski J, Cheng J, Goedert JJ, Vlahov D, Hilgartner M, Cox S, Little AM, Alexander GJ, Cramp ME, O’Brien SJ, Rosenberg WM, Thomas DL, Carrington M (2004) HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305(5685):872–874

    Article  PubMed  CAS  Google Scholar 

  68. Yoon JC, Lim JB, Park JH, Lee JM (2011) Cell-to-cell contact with hepatitis C virus-infected cells reduces functional capacity of natural killer cells. J Virol 85(23):12557–12569

    Article  PubMed  CAS  Google Scholar 

  69. Ahlenstiel G, Titerence RH, Koh C, Edlich B, Feld JJ, Rotman Y, Ghany MG, Hoofnagle JH, Liang TJ, Heller T, Rehermann B (2010) Natural killer cells are polarized toward cytotoxicity in chronic hepatitis C in an interferon-alfa-dependent manner. Gastroenterology 138(1):325–335 e321–322. doi:10.1053/j.gastro.2009.08.066

    Google Scholar 

  70. De Maria A, Fogli M, Mazza S, Basso M, Picciotto A, Costa P, Congia S, Mingari MC, Moretta L (2007) Increased natural cytotoxicity receptor expression and relevant IL-10 production in NK cells from chronically infected viremic HCV patients. Eur J Immunol 37(2):445–455

    Article  PubMed  Google Scholar 

  71. Harrison RJ, Ettorre A, Little AM, Khakoo SI (2010) Association of NKG2A with treatment for chronic hepatitis C virus infection. Clin Exp Immunol 161(2):306–314. doi:10.1111/j.1365-2249.2010.04169.x

    PubMed  CAS  Google Scholar 

  72. Alter G, Jost S, Rihn S, Reyor LL, Nolan BE, Ghebremichael M, Bosch R, Altfeld M, Lauer GM (2011) Reduced frequencies of NKp30+NKp46+, CD161+, and NKG2D+ NK cells in acute HCV infection may predict viral clearance. J Hepatol 55(2):278–288

    Article  PubMed  CAS  Google Scholar 

  73. Bozzano F, Picciotto A, Costa P, Marras F, Fazio V, Hirsch I, Olive D, Moretta L, De Maria A (2011) Activating NK cell receptor expression/function (NKp30, NKp46, DNAM-1) during chronic viraemic HCV infection is associated with the outcome of combined treatment. Eur J Immunol 41(10):2905–2914. doi:10.1002/eji.201041361

    Article  PubMed  CAS  Google Scholar 

  74. Nattermann J, Feldmann G, Ahlenstiel G, Langhans B, Sauerbruch T, Spengler U (2006) Surface expression and cytolytic function of natural killer cell receptors is altered in chronic hepatitis C. Gut 55(6):869–877

    Article  PubMed  CAS  Google Scholar 

  75. Golden-Mason L, Cox AL, Randall JA, Cheng L, Rosen HR (2010) Increased natural killer cell cytotoxicity and NKp30 expression protects against hepatitis C virus infection in high-risk individuals and inhibits replication in vitro. Hepatology (Baltimore, MD) 52(5):1581–1589

  76. Farag MM, Weigand K, Encke J, Momburg F (2011) Activation of natural killer cells by hepatitis C virus particles in vitro. Clin Exp Immunol 165(3):352–362

    Article  PubMed  CAS  Google Scholar 

  77. Fuller CL, Ruthel G, Warfield KL, Swenson DL, Bosio CM, Aman MJ, Bavari S (2007) NKp30-dependent cytolysis of filovirus-infected human dendritic cells. Cell Microbiol 9(4):962–976. doi:10.1111/j.1462-5822.2006.00844.x

    Article  PubMed  CAS  Google Scholar 

  78. Stern-Ginossar N, Mandelboim O (2009) An integrated view of the regulation of NKG2D ligands. Immunology 128(1):1–6

    Article  PubMed  CAS  Google Scholar 

  79. Li H, Lakshmikanth T, Garofalo C, Enge M, Spinnler C, Anichini A, Szekely L, Karre K, Carbone E, Selivanova G (2011) Pharmacological activation of p53 triggers anticancer innate immune response through induction of ULBP2. Cell Cycle (Georgetown, Tex) 10(19):3346–3358

    Google Scholar 

  80. Textor S, Fiegler N, Arnold A, Porgador A, Hofmann TG, Cerwenka A (2011) Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. Cancer Res 71(18):5998–6009

    Article  PubMed  CAS  Google Scholar 

  81. Eissmann P, Evans JH, Mehrabi M, Rose EL, Nedvetzki S, Davis DM (2010) Multiple mechanisms downstream of TLR-4 stimulation allow expression of NKG2D ligands to facilitate macrophage/NK cell crosstalk. J Immunol 184(12):6901–6909

    Article  PubMed  CAS  Google Scholar 

  82. Ebihara T, Masuda H, Akazawa T, Shingai M, Kikuta H, Ariga T, Matsumoto M, Seya T (2007) Induction of NKG2D ligands on human dendritic cells by TLR ligand stimulation and RNA virus infection. Int Immunol 19(10):1145–1155. doi:10.1093/intimm/dxm073

    Article  PubMed  CAS  Google Scholar 

  83. Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141

    Article  PubMed  CAS  Google Scholar 

  84. Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, Biton M, Horwitz E, Prokocimer Z, Prichard M, Hahn G, Goldman-Wohl D, Greenfield C, Yagel S, Hengel H, Altuvia Y, Margalit H, Mandelboim O (2007) Host immune system gene targeting by a viral miRNA. Science 317(5836):376–381. doi:10.1126/science.1140956

    Article  PubMed  CAS  Google Scholar 

  85. Nachmani D, Stern-Ginossar N, Sarid R, Mandelboim O (2009) Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 5(4):376–385. doi:10.1016/j.chom.2009.03.003

    Article  PubMed  CAS  Google Scholar 

  86. Bauman Y, Nachmani D, Vitenshtein A, Tsukerman P, Drayman N, Stern-Ginossar N, Lankry D, Gruda R, Mandelboim O (2011) An identical miRNA of the human JC and BK polyoma viruses targets the stress-induced ligand ULBP3 to escape immune elimination. Cell Host Microbe 9(2):93–102. doi:10.1016/j.chom.2011.01.008

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Mandelboim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidel, E., Glasner, A. & Mandelboim, O. Virus-mediated inhibition of natural cytotoxicity receptor recognition. Cell. Mol. Life Sci. 69, 3911–3920 (2012). https://doi.org/10.1007/s00018-012-1001-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1001-x

Keywords

Navigation