Skip to main content

Advertisement

Log in

Effect of silencing NEK2 on biological behaviors of HepG2 in human hepatoma cells and MAPK signal pathway

  • Original Article
  • Published:
Tumor Biology

Abstract

To investigate the expression level of NEK2 in 40 tissue specimens of primary liver cancer and to search for clues whether the effect of NEK2 depletion plays a role on biological behaviors of HepG2 cells and the relevant molecular mechanism are the objectives of this study. Real-time PCR and immunohistochemistry assessed expression level of NEK2 in specimens of cancerous tissues and carcinoma-adjacent tissues. The NEK2 expression level in HepG2, Huh7, SMMC, and 7402 cells was detected by real-time PCR and western blot to screen experimental cell line. To assess the expression levels of NEK2 mRNA and protein, an effective siRNA transfected into the HepG2 cells was designed. CCK8 and colony-forming assays were performed to verify short-term and long-term proliferative activities, respectively. Capacity of apoptosis and cell cycle changes were assessed by flow cytometry. Ability of transference and invasion was measured by Transwell Chambers. Western blot approach was used to determine the protein expression levels. There was significantly high expression level of NEK2 in cancerous tissues compared to adjacent tissues. The expression of NEK2 was higher in HepG2 cells than other cell lines. Real-time PCR and western blot shown there were obviously down-regulated NEK2 expression in the NEK2-siRNA group compared to control groups. The capacity of amplification and invasion was inhibited distinctly, and FCM revealed the apoptosis rate was increased and G1 phase was arrested in NEK2-siRNA group. Western blot indicated that low expression of NEK2 in HepG2 cells could increase the expression levels of Bax, caspase-3, P21, and TIMP-1, but significantly suppressed the c-myc, c-jun, Bcl-2, cyclinD1, CDK4, MMP2, and MMP9 expression levels and the phosphorylation levels of ERK, JNK, and P38 compared with the control groups. Our findings demonstrated that NEK2 could be a valuable carcinogenic factor and a promising therapeutic target for primary liver cancer; NEK2 may regulate proliferation, apoptosis, and other biological behaviors of HepG2 cells via MAPK signal pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.

    Article  CAS  PubMed  Google Scholar 

  2. He J, Gu D, Wu X, Reynolds K, Duan X, Yao C, et al. Major causes of death among men and women in China. N Engl J Med. 2005;353(11):1124–34.

    Article  CAS  PubMed  Google Scholar 

  3. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001;94(2):153–6.

    Article  CAS  PubMed  Google Scholar 

  4. Harvey K, Tapon N. The Salvador-Warts-Hippo pathway—an emerging tumour-suppressor network. Nat Rev Cancer. 2007;7(3):182–91.

    Article  CAS  PubMed  Google Scholar 

  5. Hagiwara S, Kudo M, Nakatani T, Sakaguchi Y, Nagashima M, Fukuta N, et al. Combination therapy with PEG-IFN-alpha and 5-FU inhibits HepG2 tumour cell growth in nude mice by apoptosis of p53. Br J Cancer. 2007;97(11):1532–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xie H, Ma H, Zhou D. Plasma HULC as a promising novel biomarker for the detection of hepatocellular carcinoma. BioMed Res Int. 2013;2013:136106.

    PubMed  PubMed Central  Google Scholar 

  7. Zhang L, Yang F, Yuan JH, Yuan SX, Zhou WP, Huo XS, et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis. 2013;34(3):577–86.

    Article  PubMed  Google Scholar 

  8. Osmani SA, Pu RT, Morris NR. Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase. Cell. 1988;53(2):237–44.

    Article  CAS  PubMed  Google Scholar 

  9. Fry AM. The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene. 2002;21(40):6184–94.

    Article  CAS  PubMed  Google Scholar 

  10. Hayward DG, Fry AM. Nek2 kinase in chromosome instability and cancer. Cancer Lett. 2006;237(2):155–66.

    Article  CAS  PubMed  Google Scholar 

  11. Bowers AJ, Boylan JF. Nek8, a NIMA family kinase member, is overexpressed in primary human breast tumors. Gene. 2004;328:135–42.

    Article  CAS  PubMed  Google Scholar 

  12. Tsunoda N, Kokuryo T, Oda K, Senga T, Yokoyama Y, Nagino M, et al. Nek2 as a novel molecular target for the treatment of breast carcinoma. Cancer Sci. 2009;100(1):111–6.

    Article  CAS  PubMed  Google Scholar 

  13. Irving EA, Bamford M. Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab. 2002;22(6):631–47.

    Article  CAS  PubMed  Google Scholar 

  14. Fry AM, Meraldi P, Nigg EA. A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J. 1998;17(2):470–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fletcher L, Cerniglia GJ, Nigg EA, Yend TJ, Muschel RJ. Inhibition of centrosome separation after DNA damage: a role for Nek2. Radiat Res. 2004;162(2):128–35.

    Article  CAS  PubMed  Google Scholar 

  16. Graf R. DdNek2, the first non-vertebrate homologue of human Nek2, is involved in the formation of microtubule-organizing centers. J Cell Sci. 2002;115(Pt 9):1919–29.

    CAS  PubMed  Google Scholar 

  17. Uto K, Sagata N. Nek2B, a novel maternal form of Nek2 kinase, is essential for the assembly or maintenance of centrosomes in early Xenopus embryos. EMBO J. 2000;19(8):1816–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prigent C, Glover DM, Giet R. Drosophila Nek2 protein kinase knockdown leads to centrosome maturation defects while overexpression causes centrosome fragmentation and cytokinesis failure. Exp Cell Res. 2005;303(1):1–13.

    CAS  PubMed  Google Scholar 

  19. Hayward DG, Clarke RB, Faragher AJ, Pillai MR, Hagan IM, Fry AM. The centrosomal kinase Nek2 displays elevated levels of protein expression in human breast cancer. Cancer Res. 2004;64(20):7370–6.

    Article  CAS  PubMed  Google Scholar 

  20. Marina M, Saavedra HI. Nek2 and Plk4: prognostic markers, drivers of breast tumorigenesis and drug resistance. Front Biosci. 2014;19:352–65.

    Article  Google Scholar 

  21. Liu X, Gao Y, Lu Y, Zhang J, Li L, Yin F. Upregulation of NEK2 is associated with drug resistance in ovarian cancer. Oncol Rep. 2014;31(2):745–54.

    PubMed  Google Scholar 

  22. Naro C, Barbagallo F, Chieffi P, Bourgeois CF, Paronetto MP, Sette C. The centrosomal kinase NEK2 is a novel splicing factor kinase involved in cell survival. Nucleic Acids Res. 2014;42(5):3218–27.

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi Y, Iwaya T, Sawada G, Kurashige J, Matsumura T, Uchi R, et al. Up-regulation of NEK2 by microRNA-128 methylation is associated with poor prognosis in colorectal cancer. Ann Surg Oncol. 2014;21(1):205–12.

    Article  PubMed  Google Scholar 

  24. Zhou W, Yang Y, Xia J, Wang H, Salama ME, Xiong W, et al. NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell. 2013;23(1):48–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhong W, Shen WF, Ning BF, Hu PF, Lin Y, Yue HY, et al. Inhibition of extracellular signal-regulated kinase 1 by adenovirus mediated small interfering RNA attenuates hepatic fibrosis in rats. Hepatology. 2009;50(5):1524–36.

    Article  CAS  PubMed  Google Scholar 

  26. Tsuboi Y, Ichida T, Sugitani S, Genda T, Inayoshi J, Takamura M, et al. Overexpression of extracellular signal-regulated protein kinase and its correlation with proliferation in human hepatocellular carcinoma. Liver Int. 2004;24(5):432–6.

    Article  CAS  PubMed  Google Scholar 

  27. Jia YL, Shi L, Zhou JN, Fu CJ, Chen L, Yuan HF, et al. Epimorphin promotes human hepatocellular carcinoma invasion and metastasis through activation of focal adhesion kinase/extracellular signal-regulated kinase/matrix metalloproteinase-9 axis. Hepatology. 2011;54(5):1808–18.

    Article  CAS  PubMed  Google Scholar 

  28. Ning Z, Wang A, Liang J, Liu J, Zhou T, Yan Q, et al. Abnormal expression of Nek2 in pancreatic ductal adenocarcinoma: a novel marker for prognosis. Int J Clin Exp Pathol. 2014;7(5):2462–9.

    PubMed  PubMed Central  Google Scholar 

  29. Raviv Z, Kalie E, Seger R. MEK5 and ERK5 are localized in the nuclei of resting as well as stimulated cells, while MEKK2 translocates from the cytosol to the nucleus upon stimulation. J Cell Sci. 2004;117(Pt 9):1773–84.

    Article  CAS  PubMed  Google Scholar 

  30. Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999;79(1):143–80.

    CAS  PubMed  Google Scholar 

  31. Sangiovanni A, Colombo E, Radaelli F, Bortoli A, Bovo G, Casiraghi MA, et al. Hepatocyte proliferation and risk of hepatocellular carcinoma in cirrhotic patients. Am J Gastroenterol. 2001;96(5):1575–80.

    Article  CAS  PubMed  Google Scholar 

  32. Lou L, Ye W, Chen Y, Wu S, Jin L, He J, et al. Ardipusilloside inhibits survival, invasion and metastasis of human hepatocellular carcinoma cells. Phytomed. 2012;19(7):603–8.

    Article  CAS  Google Scholar 

  33. Chung TW, Lee YC, Kim CH. Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. FASEB J. 2004;18(10):1123–5.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Mei-Xia Zhang: Designed and performed research, statistical analysis, manuscript writing;

Xi-Ming Xu: Designed and performed research, manuscript writing;

Jun-Jian Deng, Na-Na Han: Performed research, statistical analysis;

Ting-Ting Yu, Yuan-Yuan Gan: Performed research, statistical analysis;

Xiao-Qin He, Peng Zhang, Zhi-Xiong Long: Statistical analysis.

Conflicts of interest

None

Funding

Natural Science Foundation of Hubei Province of China supports this work, Funding NO. 2012FKC143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Ming Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, MX., Xu, XM., Zhang, P. et al. Effect of silencing NEK2 on biological behaviors of HepG2 in human hepatoma cells and MAPK signal pathway. Tumor Biol. 37, 2023–2035 (2016). https://doi.org/10.1007/s13277-015-3993-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3993-y

Keywords

Navigation