Skip to main content
Log in

Basic principles of molecular effects of irradiation

Grundlegende Prinzipien der molekularen Wirkungen von Strahlen

  • Main topic
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Um die Konsequenzen einer Bestrahlung zu verstehen, ist eine fundierte Kenntnis der radiobiologischen Mechanismen auf molekularer bis zur klinischen Ebene von Bedeutung. Die Strahlenbiologie vereint daher die grundlegenden Prinzipien der Physik wie auch der Biologie und Medizin und befasst sich mit der Wirkung von Strahlung von der subzellulären Ebene bis zum lebenden Organismus. Themen von Interesse und Relevanz werden in größerer Breite als es in diesem Artikel möglich ist in der Literatur behandelt an die der interessierte Leser verwiesen wird. Klassische Bücher auf diesem Gebiet wurden von Steel et al. (1989) und Hall (1994) geschrieben. Themen, die üblicherweise in den strahlenbiologischen Reviews abgedeckt werden, sind die Klassifikation der unterschiedlichen Strahlenarten, die Zellzyklusabhängigkeit der Strahleneffekte, Arten von Strahlenschaden und Zelltod, Dosis-Wirkungskurven, der Sauerstoffeffekt, die relative biologische Wirksamkeit, der Einfluss der Dosisrate und verschiedene andere wichtige Forschungsbereiche. Dieser kurze Überblick wird sich auf eine Untergruppe von strahlenbiologischen Themen von großer Bedeutung und relativer Neuheit konzentrieren.

Summary

In order to understand the consequences of radiation a thorough understanding of the radiobiological mechanisms of the molecular up to the clinical level is of importance. Radiobiology therefore combines the basic principles of physics as well as biology and medicine and is concerned with the action of radiation from the subcellular level up to the living organism. Topics of interest and relevance are covered in much more broadness as is possible in the short following article in the literature to which the interested reader is referred to. Classical books in this field were written by Steel et al. (1989) as well as by Hall (1994). Topics usually covered by radiobiological reviews are the classification of different types of radiation, cell cycle dependency of radiation effects, types of radiation damage and cell death, dose response curves, measurement of radiation damage, the oxygen effect, relative biological effectiveness, the influence of dose rate, and several other important research areas. This short overview will concentrate on a subset of radiobiological topics of high importance and relative novelty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Steel GG, McMillan TJ, Peacock JH. The 5Rs of radiobiology. Int J Radiat Biol, 56: 1045–1048, 1989

    Article  PubMed  CAS  Google Scholar 

  • Hall EJ. Radiobiology for the radiologist. Philadelphia, PA: JB Lippincott, 1994

    Google Scholar 

  • Iliakis G. The role of DNA double strand breaks in ionizing radiation-induced killing of eukaryotic cells. Bioessays, 13: 641–648, 1991. (Review)

    Article  PubMed  CAS  Google Scholar 

  • Nikjoo H, Lindborg L. References: RBE of low energy electrons and photons. Phys Med Biol, 55: R65–R109, 2010. (Review)

    Article  PubMed  CAS  Google Scholar 

  • Fowler JF. 21 years of biologically effective dose. Br J Radiol, 83: 554–568, 2010. (Review)

    Article  PubMed  CAS  Google Scholar 

  • Fowler JF. Sensitivity analysis of parameters in linear-quadratic radiobiologic modeling. Int J Radiat Oncol Biol Phys, 73: 1532–1537, 2009

    Article  PubMed  Google Scholar 

  • Goodhead DT, Thacker J, Cox R. Weiss Lecture. Effects of radiations of different qualities on cells: molecular mechanisms of damage and repair. Int J Radiat Biol, 63: 543–556, 1993. (Review)

    Article  PubMed  CAS  Google Scholar 

  • Prise KM, O'Sullivan JM. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer, 9: 351–360, 2009. (Review)

    Article  PubMed  CAS  Google Scholar 

  • Clingen PH, Wu JY, Miller J, Mistry N, Chin F, Wynne P, Prise KM, Hartley JA. Histone H2AX phosphorylation as a molecular pharmacological marker for DNA interstrand crosslink cancer chemotherapy. Biochem Pharmacol, 76: 19–27, 2008

    Article  PubMed  CAS  Google Scholar 

  • Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer, 8: 545–554, 2008. (Review)

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Nomenclature Committee on Cell Death 2009. Cell Death Differ, 16: 3–11, 2009

    Article  PubMed  CAS  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 26: 239–257, 1972

    Article  PubMed  CAS  Google Scholar 

  • Vitale I, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol, 12: 385–392, 2011

    Article  PubMed  CAS  Google Scholar 

  • Burdak-Rothkamm S, Prise KM. New molecular targets in radiotherapy: DNA damage signalling and repair in targeted and non-targeted cells. Eur J Pharmacol, 625: 151–155, 2009. (Review)

    Article  PubMed  CAS  Google Scholar 

  • Shao C, Folkard M, Michael BD, Prise KM. Targeted cytoplasmic irradiation induces bystander responses. Proc Natl Acad Sci U S A, 101: 13495–13500, 2004

    Article  PubMed  CAS  Google Scholar 

  • Morgan WF. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res, 159: 567–580, 2003a. (Review)

    Article  CAS  Google Scholar 

  • Morgan WF. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res, 159: 581–596, 2003b. (Review)

    Article  CAS  Google Scholar 

  • Nagasawa H, Little JB. Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res, 52: 6394–6396, 1992

    PubMed  CAS  Google Scholar 

  • Huang L, Snyder AR, Morgan WF. Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene, 22: 5848–5854, 2003. (Review)

    Article  PubMed  CAS  Google Scholar 

  • Azzam EI, de Toledo SM, Little JB. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proc Natl Acad Sci U S A, 98: 473–478, 2001

    Article  PubMed  CAS  Google Scholar 

  • Ojima M, Ban N, Kai M. DNA double-strand breaks induced by very low X-ray doses are largely due to bystander effects. Radiat Res, 170: 365–371, 2008

    Article  PubMed  CAS  Google Scholar 

  • Mancuso M, Pasquali E, Leonardi S, Tanori M, Rebessi S, Di Majo V, Pazzaglia S, Toni MP, Pimpinella M, Covelli V, Saran A. Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum. Proc Natl Acad Sci U S A, 105: 12445–12450, 2008

    Article  PubMed  CAS  Google Scholar 

  • Joiner MC, Marples B, Lambin P, Short SC, Turesson I. Low-dose hypersensitivity: current status and possible mechanisms. Int J Radiat Oncol Biol Phys, 49: 379–389, 2001. (Review)

    Article  PubMed  CAS  Google Scholar 

  • Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science, 268: 1749–1753, 1995

    Article  PubMed  CAS  Google Scholar 

  • West C, Rosenstein BS, Alsner J, Azria D, Barnett G, Begg A, et al. Establishment of a radiogenomics consortium. Int J Radiat Oncol Biol Phys, 76: 1295–1296, 2010

    Article  PubMed  Google Scholar 

  • Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PD, Burnet NG. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer, 9: 134–142, 2009

    Article  PubMed  CAS  Google Scholar 

  • Kong FM, Pan C, Eisbruch A, Ten Haken RK. Physical models and simpler dosimetric descriptors of radiation late toxicity. Semin Radiat Oncol, 17: 108–120, 2007. (Review)

    Article  PubMed  Google Scholar 

  • Burman CM. Fitting of tissue tolerance data to analytic function: improving the therapeutic ratio. Front Radiat Ther Oncol, 37: 151–162, 2002. (Review)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Selzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selzer, E., Hebar, A. Basic principles of molecular effects of irradiation. Wien Med Wochenschr 162, 47–54 (2012). https://doi.org/10.1007/s10354-012-0052-9

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-012-0052-9

Schlüsselwörter

Keywords

Navigation