Skip to main content

Advertisement

Log in

Combined Runx2 and Snail overexpression is associated with a poor prognosis in breast cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

The purpose of this study was to investigate the prognostic value of Runx2 and Snail expression in breast cancer. The expression of Runx2 and Snail in clinical specimens from 125 breast cancer patients was detected by immunohistochemistry. The results showed there is a link between Runx2 and Snail expression at protein levels (p = 0.007). The Kaplan-Meier survival analysis showed that Runx2 or Snail expression was correlated with shortened disease-free survival (DFS) (p = 0.002, p = 0.004, respectively) and overall survival (OS) (p = 0.002, p = 0.009, respectively). In addition, Runx2-positive/Snail-positive patients had the worst DFS and OS (p = 0.001, p < 0.001, respectively). In multivariate survival analysis, Runx2, Snail, and combined Runx2/Snail were still remained as independent prognostic factors for DFS (p = 0.020, p = 0.013, and p = 0.001, respectively) and OS (p = 0.027, p = 0.030 and p = 0.005, respectively). These results suggest that a combined Runx2/Snail expression could be used as a new significant prognostic biomarker for patients with breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chen W, Zheng R, Zhang S, Zhao P, Zeng H, Zou X. Report of cancer incidence and mortality in China, 2010. Ann Transl Med. 2014;2:61.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Orecchia R, Leonardi MC, Maisonneuve P, Morra A, Lazzari R, Cattani F, et al. Intraoperative radiotherapy with electrons (ELIOT) for early breast cancer: the European Institute of Oncology experience. Transl Cancer Res. 2014;3(1):59–64.

    Google Scholar 

  3. Zhang M, Li Z, Zhang X, Chang Y. Cancer stem cells as a potential therapeutic target in breast cancer. Stem Cell Investig. 2014;1:14.

    PubMed  PubMed Central  Google Scholar 

  4. Assi HA, Khoury KE, Dbouk H, Khalil LE, Mouhieddine TH, El Saghir NS. Epidemiology and prognosis of breast cancer in young women. J Thorac Dis. 2013;5(S1):S2–8.

    PubMed  PubMed Central  Google Scholar 

  5. Tan XF, Xia F. Long-term fatigue state in postoperative patients with breast cancer. Chin J Cancer Res. 2014;26(1):12–6.

    PubMed  PubMed Central  Google Scholar 

  6. Williams NR, Pigott KH, Brew-Graves C, Keshtgar MR. Intraoperative radiotherapy for breast cancer. Gland Surg. 2014;3(2):109–19.

    PubMed  PubMed Central  Google Scholar 

  7. Doisneau-Sixou S, Harbeck N. From genomic data analysis to drug development: a new generation of trials using molecular marker assessment in breast cancer. Chin Clin Oncol. 2014;3(2):16.

    PubMed  Google Scholar 

  8. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–64.

    Article  CAS  PubMed  Google Scholar 

  9. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747–54.

    Article  CAS  PubMed  Google Scholar 

  10. Wai PY, Mi Z, Gao C, Guo H, Marroquin C, Kuo PC. Ets-1 and runx2 regulate transcription of a metastatic gene, osteopontin, in murine colorectal cancer cells. J Biol Chem. 2006;281:18973–82.

    Article  CAS  PubMed  Google Scholar 

  11. Endo T, Ohta K, Kobayashi T. Expression and function of Cbfa-1/Runx2 in thyroid papillary carcinoma cells. J Clin Endocrinol Metab. 2008;93:2409–12.

    Article  CAS  PubMed  Google Scholar 

  12. Onodera Y, Miki Y, Suzuki T, Takagi K, Akahira J, Sakyu T, et al. Runx2 in human breast carcinoma: its potential roles in cancer progression. Cancer Sci. 2010;101:2670–5.

    Article  CAS  PubMed  Google Scholar 

  13. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415–28.

    Article  CAS  PubMed  Google Scholar 

  14. Olmeda D, Moreno-Bueno G, Flores JM, Fabra A, Portillo F, Cano A. Snai1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Res. 2007;67:11721–31.

    Article  CAS  PubMed  Google Scholar 

  15. van Nes JG, de Kruijf EM, Putter H, Faratian D, Munro A, Campbell F, et al. Co-expression of snail and twist determines prognosis in estrogen receptor-positive early breast cancer patients. Breast Cancer Res Treat. 2012;133:49–59.

    Article  CAS  PubMed  Google Scholar 

  16. Niu DF, Kondo T, Nakazawa T, Oishi N, Kawasaki T, Mochizuki K, et al. Transcription factor runx2 is a regulator of epithelial-mesenchymal transition and invasion in thyroid carcinomas. Lab Investig J Tech Methods Pathol. 2012;92:1181–90.

    Article  CAS  Google Scholar 

  17. Chimge NO, Baniwal SK, Little GH, Chen YB, Kahn M, Tripathy D, et al. Regulation of breast cancer metastasis by runx2 and estrogen signaling: the role of SNAi2. Breast Cancer Res: BCR. 2011;13:R127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsu YL, Huang MS, Yang CJ, Hung JY, Wu LY, Kuo PL. Lung tumor-associated osteoblast-derived bone morphogenetic protein-2 increased epithelial-to-mesenchymal transition of cancer by runx2/snail signaling pathway. J Biol Chem. 2011;286:37335–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Engels K, Knauer SK, Metzler D, Simf C, Struschka O, Bier C, et al. Dynamic intracellular survivin in oral squamous cell carcinoma: underlying molecular mechanism and potential as an early prognostic marker. J Pathol. 2007;211:532–40.

    Article  CAS  PubMed  Google Scholar 

  20. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Zhou RJ, Zhang GQ, Xu JP. Clinical significance of runx2 expression in patients with nonsmall cell lung cancer: a 5-year follow-up study. Tumour Biol J Int Soc Oncodev Biol Med. 2013;34:1807–12.

    Article  Google Scholar 

  22. Sase T, Suzuki T, Miura K, Shiiba K, Sato I, Nakamura Y, et al. Runt-related transcription factor 2 in human colon carcinoma: a potent prognostic factor associated with estrogen receptor. Int J Cancer. 2012;131:2284–93.

    Article  CAS  PubMed  Google Scholar 

  23. Das K, Leong DT, Gupta A, Shen L, Putti T, Stein GS, et al. Positive association between nuclear runx2 and oestrogen-progesterone receptor gene expression characterises a biological subtype of breast cancer. Eur J Cancer. 2009;45:2239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McDonald L, Ferrari N, Terry A, Bell M, Mohammed ZM, Orange C, et al. Runx2 correlates with subtype-specific breast cancer in a human tissue microarray, and ectopic expression of runx2 perturbs differentiation in the mouse mammary gland. Dis Models Mech. 2014;7:525–34.

    Article  CAS  Google Scholar 

  25. Park SJ, Jung SH, Jogeswar G, Ryoo HM, Yook JI, Choi HS, et al. The transcription factor snail regulates osteogenic differentiation by repressing runx2 expression. Bone. 2010;46:1498–507.

    Article  CAS  PubMed  Google Scholar 

  26. Osborne CK, Yochmowitz MG, Knight 3rd WA, McGuire WL. The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer. 1980;46:2884–8.

    Article  CAS  PubMed  Google Scholar 

  27. Lau QC, Raja E, Salto-Tellez M, Liu Q, Ito K, Inoue M, et al. Runx3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res. 2006;66:6512–20.

    Article  CAS  PubMed  Google Scholar 

  28. Khalid O, Baniwal SK, Purcell DJ, Leclerc N, Gabet Y, Stallcup MR, et al. Modulation of runx2 activity by estrogen receptor-alpha: implications for osteoporosis and breast cancer. Endocrinology. 2008;149:5984–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA. Exogenous expression of n-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol. 2000;148:779–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China (Grant no. 81372843) and the Tianjin Municipal Nature Science Foundation (Grant no. 11JCZDJC28000, 13JCYBJC21800).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhang, B., Liu, B. et al. Combined Runx2 and Snail overexpression is associated with a poor prognosis in breast cancer. Tumor Biol. 36, 4565–4573 (2015). https://doi.org/10.1007/s13277-015-3101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3101-3

Keywords

Navigation