Skip to main content

Advertisement

Log in

Upregulated tumor sirtuin 2 expression correlates with reduced TNM stage and better overall survival in surgical breast cancer patients

  • Original Article
  • Published:
Irish Journal of Medical Science (1971 -) Aims and scope Submit manuscript

Abstract

Background

This study is aimed at exploring the correlation of sirtuin 2 (SIRT2) with clinical characteristics as well as overall survival (OS) in breast cancer patients.

Methods

Totally, 296 primary breast cancer patients who underwent surgical resection were retrospectively reviewed in this study, and SIRT2 expression in tumor and adjacent tissues was determined by immunohistochemistry (IHC) and scored by semiquantitative scoring (0–12). Clinicopathological features were retrieved, and OS was calculated.

Results

Both SIRT2 IHC semiquantitative score and percentage of SIRT2 high expression by IHC score > 3 were lower in tumor tissues compared with adjacent tissues. Additionally, tumor SIRT2 high expression was associated with lower T stage, decreased N stage, and reduced TNM stage. Kaplan-Meier curves displayed that tumor SIRT2 high expression predicted longer OS. Univariate Cox’s regression analysis showed that tumor SIRT2 high expression was associated with prolonged OS, while multivariate Cox’s regression analysis displayed that tumor SIRT2 high expression was not an independent predictive factor for OS, which implied that tumor SIRT2 might predict OS indirectly through the interaction of tumor features (such as TNM stage) in breast cancer patients.

Conclusion

SIRT2 expression is lower in tumor tissues compared with adjacent tissues, and tumor SIRT2 high expression correlates with lower T stage, decreased N stage, reduced TNM stage, and longer OS in breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Torre LA, Siegel RL, Ward EM, Jemal A (2016) Global cancer incidence and mortality rates and trends--an update. Cancer Epidemiol Biomark Prev 25(1):16–27. https://doi.org/10.1158/1055-9965.EPI-15-0578

    Article  Google Scholar 

  2. Harbeck N, Gnant M (2017) Breast cancer. Lancet 389(10074):1134–1150. https://doi.org/10.1016/S0140-6736(16)31891-8

    Article  PubMed  Google Scholar 

  3. Scully OJ, Bay BH, Yip G, Yu Y (2012) Breast cancer metastasis. Cancer Genomics Proteomics 9(5):311–320

    CAS  PubMed  Google Scholar 

  4. Min JS, Kim JC, Kim JA, Kang I, Ahn JK (2018) SIRT2 reduces actin polymerization and cell migration through deacetylation and degradation of HSP90. Biochim Biophys Acta, Mol Cell Res 1865(9):1230–1238. https://doi.org/10.1016/j.bbamcr.2018.06.005

    Article  CAS  Google Scholar 

  5. Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273(2):793–798. https://doi.org/10.1006/bbrc.2000.3000

    Article  CAS  PubMed  Google Scholar 

  6. Verdin E (2015) NAD(+) in aging, metabolism, and neurodegeneration. Science 350(6265):1208–1213. https://doi.org/10.1126/science.aac4854

    Article  CAS  PubMed  Google Scholar 

  7. Hiratsuka M, Inoue T, Toda T, Kimura N, Shirayoshi Y, Kamitani H, Watanabe T, Ohama E, Tahimic CGT, Kurimasa A, Oshimura M (2003) Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem Biophys Res Commun 309(3):558–566

    Article  CAS  Google Scholar 

  8. Fiskus W, Coothankandaswamy V, Chen J, Ma H, Ha K, Saenz DT, Krieger SS, Mill CP, Sun B, Huang P, Mumm JS, Melnick AM, Bhalla KN (2016) SIRT2 deacetylates and inhibits the peroxidase activity of peroxiredoxin-1 to sensitize breast cancer cells to oxidant stress-inducing agents. Cancer Res 76(18):5467–5478. https://doi.org/10.1158/0008-5472.CAN-16-0126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim HS, Vassilopoulos A, Wang RH, Lahusen T, Xiao Z, Xu X, Li C, Veenstra TD, Li B, Yu H, Ji J, Wang XW, Park SH, Cha YI, Gius D, Deng CX (2011) SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 20(4):487–499. https://doi.org/10.1016/j.ccr.2011.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu W, Jiang K, Shen M, Qian Y, Peng Y (2015) SIRT2 suppresses non-small cell lung cancer growth by targeting JMJD2A. Biol Chem 396(8):929–936. https://doi.org/10.1515/hsz-2014-0284

    Article  CAS  PubMed  Google Scholar 

  11. Lai CC, Lin PM, Lin SF, Hsu CH, Lin HC, Hu ML, Hsu CM, Yang MY (2013) Altered expression of SIRT gene family in head and neck squamous cell carcinoma. Tumour Biol 34(3):1847–1854. https://doi.org/10.1007/s13277-013-0726-y

    Article  CAS  PubMed  Google Scholar 

  12. Du Y, Wu J, Zhang H et al (2017) Reduced expression of SIRT2 in serous ovarian carcinoma promotes cell proliferation through disinhibition of CDK4 expression. Mol Med Rep 15(4):1638–1646. https://doi.org/10.3892/mmr.2017.6183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Y, Dai D, Lu Q et al (2013) Sirt2 suppresses glioma cell growth through targeting NF-kappaB-miR-21 axis. Biochem Biophys Res Commun 441(3):661–667. https://doi.org/10.1016/j.bbrc.2013.10.077

    Article  CAS  PubMed  Google Scholar 

  14. Damodaran S, Damaschke N, Gawdzik J, Yang B, Shi C, Allen GO, Huang W, Denu J, Jarrard D (2017) Dysregulation of Sirtuin 2 (SIRT2) and histone H3K18 acetylation pathways associates with adverse prostate cancer outcomes. BMC Cancer 17(1):874. https://doi.org/10.1186/s12885-017-3853-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ye SL, Li XY, Zhao K, Feng T (2017) High expression of CD8 predicts favorable prognosis in patients with lung adenocarcinoma: a cohort study. Medicine (Baltimore) 96(15):e6472. https://doi.org/10.1097/MD.0000000000006472

    Article  CAS  Google Scholar 

  16. Arora A, Dey CS (2014) SIRT2 negatively regulates insulin resistance in C2C12 skeletal muscle cells. Biochim Biophys Acta 1842(9):1372–1378. https://doi.org/10.1016/j.bbadis.2014.04.027

    Article  CAS  PubMed  Google Scholar 

  17. Suematsu T, Li Y, Kojima H, Nakajima K, Oshimura M, Inoue T (2014) Deacetylation of the mitotic checkpoint protein BubR1 at lysine 250 by SIRT2 and subsequent effects on BubR1 degradation during the prometaphase/anaphase transition. Biochem Biophys Res Commun 453(3):588–594. https://doi.org/10.1016/j.bbrc.2014.09.128

    Article  CAS  PubMed  Google Scholar 

  18. Gal J, Bang Y, Choi HJ (2012) SIRT2 interferes with autophagy-mediated degradation of protein aggregates in neuronal cells under proteasome inhibition. Neurochem Int 61(7):992–1000. https://doi.org/10.1016/j.neuint.2012.07.010

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen P, Lee S, Lorang-Leins D, Trepel J, Smart DK (2014) SIRT2 interacts with beta-catenin to inhibit Wnt signaling output in response to radiation-induced stress. Mol Cancer Res 12(9):1244–1253. https://doi.org/10.1158/1541-7786.MCR-14-0223-T

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Temel M, Koc MN, Ulutas S et al (2016) The expression levels of the sirtuins in patients with BCC. Tumour Biol 37(5):6429–6435. https://doi.org/10.1007/s13277-015-4522-8

    Article  CAS  PubMed  Google Scholar 

  21. McGlynn LM, Zino S, MacDonald AI et al (2014) SIRT2: tumour suppressor or tumour promoter in operable breast cancer? Eur J Cancer 50(2):290–301. https://doi.org/10.1016/j.ejca.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  22. Li Z, Huang J, Yuan H, Chen Z, Luo Q, Lu S (2016) SIRT2 inhibits non-small cell lung cancer cell growth through impairing Skp2-mediated p27 degradation. Oncotarget 7(14):18927–18939. https://doi.org/10.18632/oncotarget.7816

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gong J, Wang H, Lou W, Wang G, Tao H, Wen H, Liu Y, Xie Q (2018) Associations of sirtuins with clinicopathological parameters and prognosis in non-small cell lung cancer. Cancer Manag Res 10:3341–3356. https://doi.org/10.2147/CMAR.S166946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Damme M, Crompot E, Meuleman N et al (2012) HDAC isoenzyme expression is deregulated in chronic lymphocytic leukemia B-cells and has a complex prognostic significance. Epigenetics 7(12):1403–1412. https://doi.org/10.4161/epi.22674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Yang.

Ethics declarations

The Ethical Committee of our hospital approved the protocol of this study. All enrolled patients or their guardians provided written informed consents or verbal agreements with recording.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, P., Zhou, M. & Yang, Y. Upregulated tumor sirtuin 2 expression correlates with reduced TNM stage and better overall survival in surgical breast cancer patients. Ir J Med Sci 189, 83–89 (2020). https://doi.org/10.1007/s11845-019-02071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11845-019-02071-y

Keywords

Navigation