Skip to main content

Advertisement

Log in

Clinicopathological and cellular signature of PAK1 in human bladder cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

Bladder cancer (BC) is the ninth most common cancer and the 13th most common cause of cancer death. Although p21 protein-activated kinase (PAK) regulates cell growth, motility, and morphology, the expression and function of PAK1 associated with the clinicopathological and cellular signature of human BC are not clear. This study was to examine the expression of PAK1 in human BC, the association of PAK1 with clinicopathological features, and the effect of PAK1 on cell proliferation, migration, and invasion in BC cells. A total of 54 BC and 12 normal bladder tissue specimens were retrieved. Among 54 BC patients, 39 cases were superficial BC and 15 cases were invasive BC. Histological examination revealed 29 patients with low-grade and 25 patients with high-grade papillary urothelial carcinomas. Immunohistochemical staining showed that PAK1 was overexpressed in BC tissue compared with normal bladder tissue. The overexpression of PAK1 was significantly associated with tumor size, histological grade, and lymph node metastasis, but not with gender, age, clinical stage, tumor number, and recurrence. Furthermore, the cytoplasmic distribution of PAK1 was observed in BC cells. Knocking down of PAK1 using lentiviral transduction decreased BC cell proliferation, migration, and invasion. In conclusion, we demonstrated that the overexpression of PAK1 is closely associated with the clinicopathological features of BC, suggesting that PAK1 may play an important role in the development and progression of BC and may be a potential therapeutic target for the treatment of BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sauter G, Amin MB, Kogevinas M, Simon R. Bladder cancer. In: Stewart BW, Wild CP, editors. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014. p. 632–44.

    Google Scholar 

  2. Burger M, Catto JW, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013;63(2):234–41.

    Article  PubMed  Google Scholar 

  3. Di Stasi SM, Valenti M, Verri C, Liberati E, Giurioli A, Leprini G, et al. Electromotive instillation of mitomycin immediately before transurethral resection for patients with primary urothelial non-muscle invasive bladder cancer: a randomised controlled trial. Lancet Oncol. 2011;12(9):871–9.

    Article  PubMed  Google Scholar 

  4. Sylvester RJ, van der Meijden AP, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol. 2006;49(3):466–5. discussion 75–7.

    Article  PubMed  Google Scholar 

  5. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.

    Article  PubMed  Google Scholar 

  6. DeGraff DJ, Clark PE, Cates JM, Yamashita H, Robinson VL, Yu X, et al. Loss of the urothelial differentiation marker FOXA1 is associated with high grade, late stage bladder cancer and increased tumor proliferation. PLoS One. 2012;7(5):e36669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. King H, Nicholas NS, Wells CM. Role of p-21-activated kinases in cancer progression. Int Rev Cell Mol Biol. 2014;309:347–87.

    Article  CAS  PubMed  Google Scholar 

  8. Eswaran J, Li DQ, Shah A, Kumar R. Molecular pathways: targeting p21-activated kinase 1 signaling in cancer—opportunities, challenges, and limitations. Clin Cancer Res. 2012;18(14):3743–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dummler B, Ohshiro K, Kumar R, Field J. Pak protein kinases and their role in cancer. Cancer Metastasis Rev. 2009;28(1–2):51–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Minden A. PAK4-6 in cancer and neuronal development. Cell Logist. 2012;2(2):95–104.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Radu M, Semenova G, Kosoff R, Chernoff J. PAK signalling during the development and progression of cancer. Nat Rev Cancer. 2014;14(1):13–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ye DZ, Field J. PAK signaling in cancer. Cell Logist. 2012;2(2):105–16.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chow HY, Jubb AM, Koch JN, Jaffer ZM, Stepanova D, Campbell DA, et al. p21-Activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer Res. 2012;72(22):5966–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dammann K, Khare V, Gasche C. Tracing PAKs from GI inflammation to cancer. Gut. 2014;63(7):1173–84.

    Article  CAS  PubMed  Google Scholar 

  15. Ye DZ, Jin S, Zhuo Y, Field J. p21-Activated kinase 1 (Pak1) phosphorylates BAD directly at serine 111 in vitro and indirectly through Raf-1 at serine 112. PLoS One. 2011;6(11):e27637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goc A, Al-Azayzih A, Abdalla M, Al-Husein B, Kavuri S, Lee J, et al. P21 activated kinase-1 (Pak1) promotes prostate tumor growth and microinvasion via inhibition of transforming growth factor beta expression and enhanced matrix metalloproteinase 9 secretion. J Biol Chem. 2013;288(5):3025–35.

    Article  CAS  PubMed  Google Scholar 

  17. Xu G, Barrios-Rodiles M, Jerkic M, Turinsky AL, Nadon R, Vera S, et al. Novel protein interactions with endoglin and activin receptor-like kinase 1: potential role in vascular networks. Mol Cell Proteomics. 2014;13(2):489–502.

    Article  CAS  PubMed  Google Scholar 

  18. Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature. 1994;367(6458):40–6.

    Article  CAS  PubMed  Google Scholar 

  19. Kou B, Gao Y, Du C, Shi Q, Xu S, Wang CQ, et al. miR-145 inhibits invasion of bladder cancer cells by targeting PAK1. Urol Oncol. 2014;32:846–854

  20. Ong CC, Jubb AM, Zhou W, Haverty PM, Harris AL, Belvin M, et al. p21-activated kinase 1: PAK’ed with potential. Oncotarget. 2011;2(6):491–6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nikolic M. The Pak1 kinase: an important regulator of neuronal morphology and function in the developing forebrain. Mol Neurobiol. 2008;37(2–3):187–202.

    Article  CAS  PubMed  Google Scholar 

  22. Rayala SK, Molli PR, Kumar R. Nuclear p21-activated kinase 1 in breast cancer packs off tamoxifen sensitivity. Cancer Res. 2006;66(12):5985–8.

    Article  CAS  PubMed  Google Scholar 

  23. Kamai T, Shirataki H, Nakanishi K, Furuya N, Kambara T, Abe H, et al. Increased Rac1 activity and Pak1 overexpression are associated with lymphovascular invasion and lymph node metastasis of upper urinary tract cancer. BMC Cancer. 2010;10:164.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li LH, Luo Q, Zheng MH, Pan C, Wu GY, Lu YZ, et al. P21-activated protein kinase 1 is overexpressed in gastric cancer and induces cancer metastasis. Oncol Rep. 2012;27(5):1435–42.

    CAS  PubMed  Google Scholar 

  25. Siu MK, Wong ES, Chan HY, Kong DS, Woo NW, Tam KF, et al. Differential expression and phosphorylation of Pak1 and Pak2 in ovarian cancer: effects on prognosis and cell invasion. Int J Cancer. 2010;127(1):21–31.

    Article  CAS  PubMed  Google Scholar 

  26. Siu MK, Yeung MC, Zhang H, Kong DS, Ho JW, Ngan HY, et al. p21-Activated kinase-1 promotes aggressive phenotype, cell proliferation, and invasion in gestational trophoblastic disease. Am J Pathol. 2010;176(6):3015–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ito M, Nishiyama H, Kawanishi H, Matsui S, Guilford P, Reeve A, et al. P21-activated kinase 1: a new molecular marker for intravesical recurrence after transurethral resection of bladder cancer. J Urol. 2007;178(3 Pt 1):1073–9.

    Article  CAS  PubMed  Google Scholar 

  28. Redelman-Sidi G, Iyer G, Solit DB, Glickman MS. Oncogenic activation of Pak1-dependent pathway of macropinocytosis determines BCG entry into bladder cancer cells. Cancer Res. 2013;73(3):1156–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang X, Gui L, Zhang Y, Zhang J, Shi J, Xu G. Cystatin B is a progression marker of human epithelial ovarian tumors mediated by the TGF-beta signaling pathway. Int J Oncol. 2014;44(4):1099–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou W, Jubb AM, Lyle K, Xiao Q, Ong CC, Desai R, et al. PAK1 mediates pancreatic cancer cell migration and resistance to MET inhibition. J Pathol. 2014. doi:10.1002/path.4412.

    PubMed Central  Google Scholar 

  31. Ong CC, Jubb AM, Haverty PM, Zhou W, Tran V, Truong T, et al. Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells. Proc Natl Acad Sci U S A. 2011;108(17):7177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qing H, Gong W, Che Y, Wang X, Peng L, Liang Y, et al. PAK1-dependent MAPK pathway activation is required for colorectal cancer cell proliferation. Tumour Biol. 2012;33(4):985–94.

    Article  CAS  PubMed  Google Scholar 

  33. Lu W, Qu JJ, Li BL, Lu C, Yan Q, Wu XM, et al. Overexpression of p21-activated kinase 1 promotes endometrial cancer progression. Oncol Rep. 2013;29(4):1547–55.

    CAS  PubMed  Google Scholar 

  34. Park J, Kim JM, Park JK, Huang S, Kwak SY, Ryu KA, et al. Association of p21-activated kinase-1 activity with aggressive tumor behavior and poor prognosis of head and neck cancer. Head Neck. 2014.

  35. Shrestha Y, Schafer EJ, Boehm JS, Thomas SR, He F, Du J, et al. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene. 2012;31(29):3397–408.

    Article  CAS  PubMed  Google Scholar 

  36. McCarty SK, Saji M, Zhang X, Jarjoura D, Fusco A, Vasko VV, et al. Group I p21-activated kinases regulate thyroid cancer cell migration and are overexpressed and activated in thyroid cancer invasion. Endocr-Relat Cancer. 2010;17(4):989–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Z, Fu M, Wang L, Liu J, Li Y, Brakebusch C, et al. p21-activated kinase 1 (PAK1) can promote ERK activation in a kinase-independent manner. J Biol Chem. 2013;288(27):20093–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Orr AW, Hahn C, Blackman BR, Schwartz MA. p21-activated kinase signaling regulates oxidant-dependent NF-kappa B activation by flow. Circ Res. 2008;103(6):671–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee SH, Jung YS, Chung JY, Oh AY, Lee SJ, Choi DH, et al. Novel tumor suppressive function of Smad4 in serum starvation-induced cell death through PAK1-PUMA pathway. Cell Death Dis. 2011;2:e235.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81272880) to GX and the Shanghai Committee of Science and Technology (124119a3302) to GC.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Chen or Guoxiong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Chen, G., Luo, J. et al. Clinicopathological and cellular signature of PAK1 in human bladder cancer. Tumor Biol. 36, 2359–2368 (2015). https://doi.org/10.1007/s13277-014-2843-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2843-7

Keywords

Navigation