Skip to main content

Advertisement

Log in

Pak protein kinases and their role in cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Some of the characteristics of cancer cells are high rates of cell proliferation, cell survival, and the ability to invade surrounding tissue. The cytoskeleton has an essential role in these processes. Dynamic changes in the cytoskeleton are necessary for cell motility and cancer cells are dependent on motility for invasion and metastasis. The signaling pathways behind the reshaping and migrating properties of the cytoskeleton in cancer cells involve a group of Ras-related small GTPases and their effectors, including the p21-activated kinases (Paks). Paks are a family of serine/threonine protein kinases comprised of six isoforms (Pak 1–6), all of which are direct targets of the small GTPases Rac and Cdc42. Besides their role in cytoskeletal dynamics, Paks have recently been shown to regulate various other cellular activities, including cell survival, mitosis, and transcription. Paks are overexpressed and/or hyperactivated in several human tumors and their role in cell transformation makes them attractive therapeutic targets. Pak-targeted therapeutics may efficiently inhibit certain types of tumors and efforts to identify selective Pak-inhibitors are underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Manser, E., et al. (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 367, 40–46.

    PubMed  CAS  Google Scholar 

  2. Tahara, S. M., & Traugh, J. A. (1981). Cyclic Nucleotide-independent protein kinases from rabbit reticulocytes. Identification and characterization of a protein kinase activated by proteolysis. Journal of Biological Chemistry, 256(22), 11558–64.

    PubMed  CAS  Google Scholar 

  3. Bokoch, G. M. (2003). Biology of the p21-activated kinases. Annu. Rev. Biochem, 72, 743–781.

    PubMed  CAS  Google Scholar 

  4. Jaffer, Z. M., & Chernoff, J. (2002). p21-activated kinases: three more join the Pak. International Journal of Ciochemistry and Cell Biology, 34(7), 713–7.

    CAS  Google Scholar 

  5. Zhao, Z., et al. (1998). A conserved Negative Regulatory Region in aPAK: inhibition of PAK Kinases Reveals Their Morphological Roles Downstream of Cdc42 and Rac1. Molecular and Cell Biology, 18(4), 2153–2163.

    CAS  Google Scholar 

  6. Lei, M., et al. (2000). Structure of PAK1 in an Autoinhibited Conformation Reveals a Multistage Activation Switch. Cell, 102, 387–397.

    PubMed  CAS  Google Scholar 

  7. Gatti, A., et al. (1999). Multisite autophosphorylation of p21-activated protein kinase g-Pak as a function of Activation. Journal of Biological Chemistry, 274, 8022–8028.

    PubMed  CAS  Google Scholar 

  8. Chong, C., et al. (2001). The mechanism of PAK activation. Journal of Biological Chemistry, 276, 17347–17353.

    PubMed  CAS  Google Scholar 

  9. Abo, A., et al. (1998). PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. European Molecular Biology Organization Journal, 17, 6527–6540.

    CAS  Google Scholar 

  10. Dan, C., et al. (2002). PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E-115 cells. Molecular and Cellular Biology, 22(2), 567–577.

    PubMed  CAS  Google Scholar 

  11. Bagheri-Yarmond, R. B., et al. (2000). Vascular endothelial growth factor upregulation via p21-activated kinase-1 signaling regulates heregulin-b1-mediated angiogenesis. Journal of Biological Chemistry, 275, 39451–39457.

    Google Scholar 

  12. Dadke, D., et al. (2003). Activation of p21-activated kinase 1-nuclear factor kappaB signaling by Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor during cellular transformation. Cancer Research, 63(24), 8837–8847.

    PubMed  CAS  Google Scholar 

  13. Dharmawardhane, S., et al. (1997). Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. Journal of Cell Biology, 138(6), 1265–78.

    PubMed  CAS  Google Scholar 

  14. Knaus, U. G., et al. (1995). Regulation of human leukocyte p21-activated kinases through G protein-coupled receptors. Science, 269(5221), 221–223.

    PubMed  CAS  Google Scholar 

  15. Menard, R. E., & Mattingly, R. R. (2003). Cell surface receptors activate p21-activated kinase 1 via multiple Ras and PI3-kinase-dependent pathways. Cell Signal, 15(12), 1099–1109.

    PubMed  CAS  Google Scholar 

  16. Schmitz, U., et al. (2002). Lysophosphatidic Acid Stimulates p21-Activated Kinase in Vascular Smooth Muscle Cells. Biochemical and Biophysical Research Communication, 291(3), 687–691.

    CAS  Google Scholar 

  17. Teo, M., Manser, E., & Lim, L. (1995). Identification and molecular cloning of a p21cdc42/rac1-activated serine/threonine kinase that is rapidly activated by thrombin in platelets. Journal of Biological Chemistry, 270, 26690–26697.

    PubMed  CAS  Google Scholar 

  18. Tsakiridis, T., et al. (1996). Insulin activates a p21-activated kinase in muscle cells via phosphatidylinositol 3-kinase. Journal of Biological Chemistry, 271, 19664–19667.

    PubMed  CAS  Google Scholar 

  19. Banerjee, M., et al. (2002). Pak1 phosphorylation on T212 affects microtubules in cells undergoing mitosis. Current Biology, 12, 1233–1239.

    PubMed  CAS  Google Scholar 

  20. Thiel, D. A., et al. (2002). Cell cycle regulated phosphorylation of p21-activated kinase 1. Current Biology, 12, 1227–1232.

    PubMed  CAS  Google Scholar 

  21. King, C. C., et al. (2000). p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). Journal of Biological Chemistry, 275(52), 41201–41209.

    PubMed  CAS  Google Scholar 

  22. Bokoch, G. M., et al. (1996). Interaction of the Nck adapter protein with p21-activated kinase (PAK1). Journal of Biological Chemistry, 271, 25746–25749.

    PubMed  CAS  Google Scholar 

  23. Galisteo, M. L., et al. (1996). The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. Journal of Biological Chemistry, 271, 20997–21000.

    PubMed  CAS  Google Scholar 

  24. Lu, W., et al. (1997). Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Current Biology, 7, 85–94.

    PubMed  CAS  Google Scholar 

  25. Manser, E., et al. (1998). PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Molecular Cell, 1, 183–192.

    PubMed  CAS  Google Scholar 

  26. Bagrodia, S., et al. (1999). A Tyrosine-phosphorylated Protein That Binds to an Important Regulatory Region on the Cool Family of p21-activated Kinase-binding Proteins. Journal of Biological Chemistry, 274, 22393–22400.

    PubMed  CAS  Google Scholar 

  27. Bar-Sagi, D., & Hall, A. (2000). Ras and Rho GTPases: a family reunion. Cell, 103, 227–238.

    PubMed  CAS  Google Scholar 

  28. Xia, C., et al. (2001). Regulation of the p21-activated kinase (PAK) by a human Gbeta -like WD-repeat protein, hPIP1. Proc Natl Acad Sci U S A, 98(11), 6174–6179.

    PubMed  CAS  Google Scholar 

  29. Alahari, S. K., Reddig, P. J., & Juliano, R. L. (2004). The integrin-binding protein Nischarin regulates cell migration by inhibiting PAK. European Molecular Biology Organization Journal, 23(14), 2777–2788.

    CAS  Google Scholar 

  30. Kissil, J. L., et al. (2003). Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, Pak1. Molecular Cell, 12(4), 841–849.

    PubMed  CAS  Google Scholar 

  31. Koh, C. G., et al. (2002). The p21-activated kinase PAK is negatively regulated by POPX1 and POPX2, a pair of serine/threonine phosphatases of the PP2C family. Current Biology, 12(4), 317–321.

    PubMed  CAS  Google Scholar 

  32. Tuazon, P. T., et al. (1997). Determinants for Substrate Phosphorylation by p21-Activated Protein Kinase (g-PAK). Biochemistry, 36, 16059 –16064.

    PubMed  CAS  Google Scholar 

  33. Rennefahrt, U. E. E., et al. (2007). Specificity Profiling of Pak Kinases Allows Identification of Novel Phosphorylation Site. Journal of Biological Chemistry, 282(21), 15667–15678.

    PubMed  CAS  Google Scholar 

  34. Kiosses, W. B., et al. (1999). A role for p21—activated kinase in endothelial cell migration. Journal of Cell Biology, 147(4), 831–44.

    PubMed  CAS  Google Scholar 

  35. Yang, Z., et al. (2005). Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail’s subcellular localization and functions. Cancer Research, 65(8), 3179–384.

    PubMed  CAS  Google Scholar 

  36. Callow, M. G., et al. (2002). Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. Journal of Biological Chemistry, 277(1), 550–558.

    PubMed  CAS  Google Scholar 

  37. Vadlamudi, R. K., et al. (2000). Regulatable Expression of p21-activated Kinase-1 Promotes Anchorage-independent Growth and Abnormal Organization of Mitotic Spindles in Human Epithelial Breast Cancer Cells. Journal of Biological Chemistry, 275, 36238–36244.

    PubMed  CAS  Google Scholar 

  38. Shalom-Barak, T., & Knaus, U. G. A. (2002). p21-activated kinase-controlled metabolic switch up-regulates phagocyte NADPH oxidase. Journal of Biological Chemistry, 277(43), 40659–40665.

    PubMed  CAS  Google Scholar 

  39. Gururaj, A., et al. (2004). Regulation of phosphoglucomutase 1 phosphorylation and activity by a signaling kinase. Oncogene, 3(49), 8118–8127.

    Google Scholar 

  40. Li, F., et al. (2002). p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. European Molecular Biology Organization Reports, 3(8), 767–73.

    PubMed  CAS  Google Scholar 

  41. Vadlamudi, R. K., et al. (2005). p21-activated kinase 1 regulates microtubule dynamics by phosphorylating tubulin cofactor B. Molecular and Cellular Biology, 25(9), 3726–36.

    PubMed  CAS  Google Scholar 

  42. Cheung, P., et al. (2000). Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Molecular Cell, 5(6), 905–15.

    PubMed  CAS  Google Scholar 

  43. Zhao, Z. S., et al. (2005). The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Molecular Cell, 20(2), 237–49.

    PubMed  CAS  Google Scholar 

  44. Maroto, B., et al. (2008). P21-activated kinase is required for mitotic progression and regulates Plk1. Oncogene, 27(36), 4900–8.

    PubMed  CAS  Google Scholar 

  45. Balasenthil, S., et al. (2003). P21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. Journal of Biological Chemistry.

  46. Beeser, A., et al. (2005). Role of group A p21-activated kinases in activation of extracellular-regulated kinase by growth factors. Journal of Biological Chemistry, 80, 36609–36615.

    Google Scholar 

  47. Tang, Y., et al. (1997). Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Molecular and Cell Biology, 17, 4454–4464.

    CAS  Google Scholar 

  48. Frost, J. A., et al. (1997). Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. European Molecular Biology Organization Journal, 16(21), 6426–38.

    CAS  Google Scholar 

  49. Tran, N. H., & Frost, J. A. (2003). Phosphorylation of Raf-1 by p21-activated kinase 1 and Src regulates Raf-1 autoinhibition. Journal of Biological Chemistry, 278(13), 11221–6.

    PubMed  CAS  Google Scholar 

  50. King, A., et al. (1998). The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature, 396, 180–183.

    PubMed  CAS  Google Scholar 

  51. Sells, M. A., Pfaff, A., & Chernoff, J. (2000). Temporal and Spatial Distribution of Activated Pak1 in Fibroblasts. Journal of Cell Biology, 151, 1449–1457.

    PubMed  CAS  Google Scholar 

  52. Sells, M. A., et al. (1997). Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Current Biology, 7, 202–210.

    PubMed  CAS  Google Scholar 

  53. Manser, E., et al. (1997). Expression of constitutively active a-Pak reveals effects of the kinase on actin and focal complexes. Molecular and Cell Biology, 17, 1129–1143.

    CAS  Google Scholar 

  54. Sells, M., Boyd, J. T., & Chernoff, J. (1999). p21-Activated Kinase 1 (Pak1) regulates Cell Motility in Mammalian Fibroblasts. Journal Cell Biology, 145, 837–849.

    CAS  Google Scholar 

  55. Frost, J. A., et al. (1998). Differential effects of PAK1-activating mutations reveal activity-dependent and -independent effects on cytoskeletal regulation. Journal of Biological Chemistry, 273(43), 28191–8.

    PubMed  CAS  Google Scholar 

  56. Delorme, V., et al. (2007). Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev Cell, 13(5), 646–62.

    PubMed  CAS  Google Scholar 

  57. Vadlamudi, R. K., et al. (2004). p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. European Molecular Biology Organization Reports, 5(2), 154–60.

    PubMed  CAS  Google Scholar 

  58. Wittmann, T., Bokoch, G. M., & Waterman-Storer, C. M. (2004). Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Rac1. Journal of Biological Chemistry, 279(7), 6196–203.

    PubMed  CAS  Google Scholar 

  59. Daub, H., et al. (2001). Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. Journal of Biological Chemistry, 276(3), 1677–80.

    PubMed  CAS  Google Scholar 

  60. Sanders, L. C., et al. (1999). Inhibition of myosin light chain kinase by p21-activated kinase. Science, 283(5410), 2083–2085.

    PubMed  CAS  Google Scholar 

  61. Jin, S., et al. (2005). PAK1-dependent phosphorylation of RAF-1 regulates its mitochondrial localization, phosphorylation of BAD, and BCL-2 association. Journal of Biological Chemistry, 280, 24698–24705.

    PubMed  CAS  Google Scholar 

  62. Wu, X., et al. (2008). p21 activated kinase 5 activates Raf-1 and targets it to mitochondria. Journal of Cellular Biochemistry, 105(1), 167–75.

    PubMed  CAS  Google Scholar 

  63. Cotteret, S., et al. (2003). p21-Activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD. Molecular and Cellular Biology, 23(16), 5526–39.

    PubMed  CAS  Google Scholar 

  64. Huser, M., et al. (2001). MEK kinase activity is not necessary for Raf-1 function. European Molecular Biology Organization Journal, 20(8), 1940–51.

    CAS  Google Scholar 

  65. Frost, J. A., et al. (2000). Stimulation of NFkB Activity by Multiple Signaling Pathways Requires PAK1. Journal of Biological Chemistry, 275, 19693–19699.

    PubMed  CAS  Google Scholar 

  66. Friedland, J. C., et al. (2007). {alpha}6{beta}4 integrin activates Rac-dependent p21-activated kinase 1 to drive NF-{kappa}B-dependent resistance to apoptosis in 3D mammary acini. Journal of Cell Science, jcs.03484.

  67. Mazumdar, A., & Kumar, R. (2003). Estrogen regulation of Pak1 and FKHR pathways in breast cancer cells. FEBS Lett, 535(1–3), 6–10.

    PubMed  CAS  Google Scholar 

  68. Vadlamudi, R. K., et al. (2004). Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes. Cancer Cell, 5(6), 575–85.

    PubMed  CAS  Google Scholar 

  69. Lee, N., et al. (1997). Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis. Proc. Natl. Acad. Sci. USA, 94, 13642–13647.

    PubMed  CAS  Google Scholar 

  70. Rudel, T., & Bokoch, G. M. (1997). Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of Pak2. Science, 276, 1571–1574.

    PubMed  CAS  Google Scholar 

  71. Walter, B. N., et al. (1998). Cleavage and activation of p21-activated protein kinase -PAK by CPP32 (Caspase 3). Effects of Autophosphorylation on Activity. Journal of Biological Chemistry, 273, 28733–28739.

    PubMed  CAS  Google Scholar 

  72. Jakobi, R., Moertl, E., & Koeppel, M. A. (2001). p21-activated protein kinase g-PAK suppresses programmed cell death of BALB3T3 fibroblasts. Journal of Biological Chemistry, 276, 16624–16634.

    PubMed  CAS  Google Scholar 

  73. Eswaran, J., et al. (2008). UnPAKing the class differences among p21-activated kinases. Trends Biochem Sci.

  74. Meng, J., et al. (2005). Abnormal long-lasting synaptic plasticity and cognition in mice lacking the mental retardation gene Pak3. Journal of Neuroscience, 25(28), 6641–50.

    PubMed  CAS  Google Scholar 

  75. Pandey, A., et al. (2002). Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain. Oncogene, 21(24), 3939–48.

    PubMed  CAS  Google Scholar 

  76. Yang, F., et al. (2001). Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. Journal of Biological Chemistry, 276(18), 15345–53.

    PubMed  CAS  Google Scholar 

  77. Qu, J., et al. (2003). PAK4 kinase is essential for embryonic viability and for proper neuronal development. Molecular and Cellular Biology, 23(20), 7122–33.

    PubMed  CAS  Google Scholar 

  78. Li, X., & Minden, A. (2003). Targeted disruption of the gene for the PAK5 kinase in mice. Molecular and Cellular Biology, 23(20), 7134–42.

    PubMed  CAS  Google Scholar 

  79. Allen, K. M., et al. (1998). PAK3 mutation in nonsyndromic X-linked mental retardation. Nature Genetics, 20, 25–30.

    PubMed  CAS  Google Scholar 

  80. Bienvenu, T., et al. (2000). Missense mutation in PAK3, R67C, causes X-linked nonspecific mental retardation. American Journal of Medical Genetics, 93(4), 294–8.

    PubMed  CAS  Google Scholar 

  81. Wang, R. A., et al. (2005). PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene.

  82. Osada, S., et al. (1997). A domain containing the Cdc42/Rac interactive binding (CRIB) region of p65PAK inhibits transcriptional activation and cell transformation mediated by the Ras-Rac pathway. Febs letters, 404, 227–233.

    PubMed  CAS  Google Scholar 

  83. Bekri, S., et al. (1997). Detailed map of a region commonly amplified at 11q13–>q14 in human breast carcinoma. Cytogenet Cell Genet, 79(1–2), 125–31.

    PubMed  CAS  Google Scholar 

  84. Brown, L. A., et al. (2008). Amplification of 11q13 in ovarian carcinoma. Genes Chromosomes Cancer, 47(6), 481–9.

    PubMed  CAS  Google Scholar 

  85. Bostner, J., et al. (2007). Amplification of CCND1 and PAK1 as predictors of recurrence and tamoxifen resistance in postmenopausal breast cancer. Oncogene, 26(49), 6997–7005.

    PubMed  CAS  Google Scholar 

  86. Parsons, D. W., et al. (2005). Colorectal cancer: mutations in a signalling pathway. Nature, 436(7052), 792.

    PubMed  CAS  Google Scholar 

  87. Chen, S., et al. (2008). Copy number alterations in pancreatic cancer identify recurrent Pak4 amplification. Cancer Biol. Ther., X, XXX.

  88. Reddy, S. D., et al. (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Research, 68(20), 8195–200.

    PubMed  CAS  Google Scholar 

  89. Kissil, J. L., et al. (2007). Requirement for Rac1 in a K-ras induced lung cancer in the mouse. Cancer Res, 67(17), 8089–94.

    PubMed  CAS  Google Scholar 

  90. Li, Q., et al. (2008). p21-Activated kinase 1 coordinates aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for premalignant progression of human breast cancer. Neoplasia, 10(4), 314–29.

    PubMed  CAS  Google Scholar 

  91. Nola, S., et al. (2008). Scrib regulates PAK activity during the cell migration process. Human Molecular Genetics, 17(22), 3552–65.

    PubMed  CAS  Google Scholar 

  92. Holm, C., et al. (2006). Association between Pak1 expression and subcellular localization and tamoxifen resistance in breast cancer patients. Journal of the National Cancer Institute, 98(10), 671–80.

    Article  PubMed  CAS  Google Scholar 

  93. Tang, Y., et al. (1998). A role for Pak protein kinases in Schwann cell transformation. Proc. Natl. Acad. Sci. USA, 95, 5139–5144.

    CAS  Google Scholar 

  94. Surace, E. I., Haipek, C. A., & Gutmann, D. H. (2004). Effect of merlin phosphorylation on neurofibromatosis 2 (NF2) gene function. Oncogene, 23(2), 580–587.

    PubMed  CAS  Google Scholar 

  95. Kissil, J. L., et al. (2002). Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. Journal of Biological Chemistry, 277(12), 10394–9.

    PubMed  CAS  Google Scholar 

  96. Xiao, G.-H., et al. (2002). p21-activated Kinase Links Rac/Cdc42 Signaling to Merlin. Journal Biological Chemistry, 277, 883–886.

    CAS  Google Scholar 

  97. Alfthan, K., et al. (2004). Cyclic AMP-dependent Protein Kinase Phosphorylates Merlin at Serine 518 Independently of p21-activated Kinase and Promotes Merlin-Ezrin Heterodimerization. Journal of Biological Chemistry, 279(18), 18559–18566.

    PubMed  CAS  Google Scholar 

  98. Hirokawa, Y., et al. (2004). A clue to the therapy of neurofibromatosis type 2: NF2/merlin is a PAK1 inhibitor. Cancer Journal, 10(1), 20–26.

    CAS  Google Scholar 

  99. Pelton, P. D., et al. (1998). Ruffling membrane, stress fiber, cell spreading and proliferation abnormalities in human Schwannoma cells. Oncogene, 17, 2195–2209.

    PubMed  CAS  Google Scholar 

  100. Shaw, R. J., et al. (2001). The Nf2 tumor suppressor, Merlin, functions in Rac-dependent signalling. Developmental Cell, 1, 63–72.

    PubMed  CAS  Google Scholar 

  101. Porchia, L. M., et al. (2007). 2-Amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phe nyl} Acetamide (OSU-03012), a Celecoxib Derivative, Directly Targets p21-Activated Kinase. Molecular Pharmacology, 72(5), 1124–31.

    PubMed  CAS  Google Scholar 

  102. Nheu, T. V., et al. (2002). The K252a derivatives, inhibitors for the PAK/MLK kinase family selectively block the growth of RAS transformants. Cancer Journal, 8(4), 328–36.

    Google Scholar 

  103. Thullberg, M., et al. (2007). The kinase-inhibitory domain of p21-activated kinase 1 (PAK1) inhibits cell cycle progression independent of PAK1 kinase activity. Oncogene, 26(12), 1820–8.

    PubMed  CAS  Google Scholar 

  104. Deacon, S. W., et al. (2008). An Isoform-Selective, Small-Molecule Inhibitor Targets the Autoregulatory Mechanism of p21-Activated Kinase. Chemistry & Biology, 5(4), 322–331.

    Google Scholar 

  105. Shin, E. Y., et al. (2002). Phosphorylation of p85 beta PIX, a Rac/Cdc42-specific guanine nucleotide exchange factor, via the Ras/ERK/PAK2 pathway is required for basic fibroblast growth factor-induced neurite outgrowth. Journal of Biological Chemistry, 277(46), 44417–30.

    PubMed  CAS  Google Scholar 

  106. Foster, D. B., et al. (2000). Phosphorylation of caldesmon by p21-activated kinase. Implications for the Ca(2+) sensitivity of smooth muscle contraction. Journal of Biological Chemistry, 275(3), 1959–65.

    PubMed  CAS  Google Scholar 

  107. McFawn, P. K., et al. (2003). Calcium-independent contraction and sensitization of airway smooth muscle by p21-activated protein kinase. American journal of physiology. Lung cellular and molecular physiology, 284(5), L863–70.

    PubMed  CAS  Google Scholar 

  108. Van Eyk, J. E., et al. (1998). Different molecular mechanisms for Rho family GTPase-dependent, Ca2+-independent contraction of smooth muscle. Journal of Biological Chemistry, 273(36), 23433–9.

    PubMed  Google Scholar 

  109. Takizawa, N., Koga, Y., & Ikebe, M. (2002). Phosphorylation of CPI17 and myosin binding subunit of type 1 protein phosphatase by p21-activated kinase. Biochem Biophys Res Commun, 297(4), 773–8.

    PubMed  CAS  Google Scholar 

  110. Ohtakara, K., et al. (2000). p21-activated kinase PAK phosphorylates desmin at sites different from those for Rho-associated kinase. Biochem Biophys Res Commun, 272(3), 712–6.

    PubMed  CAS  Google Scholar 

  111. Vadlamudi, R. K., et al. (2002). Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nature Cell Biology, 4(9), 681–90.

    PubMed  CAS  Google Scholar 

  112. Zenke, F. T., et al. (2004). p21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor. Journal of Biological Chemistry, 279(18), 18392–400.

    PubMed  CAS  Google Scholar 

  113. Edwards, D. C., et al. (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nature Cell Biology, 1, 253–259.

    PubMed  CAS  Google Scholar 

  114. Dan, C., et al. (2001). Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. Journal of Biological Chemistry, 276(34), 32115–21.

    PubMed  CAS  Google Scholar 

  115. Goeckeler, Z. M., et al. (2000). Phosphorylation of myosin light chain kinase by p21-activated kinase PAK2. Journal of Biological Chemistry, 275(24), 18366–74.

    PubMed  CAS  Google Scholar 

  116. Alberts, A. S., et al. (2005). PAK1 negatively regulates the activity of the Rho exchange factor NET1. Journal of Biological Chemistry, 280(13), 12152–61.

    PubMed  CAS  Google Scholar 

  117. DerMardirossian, C., Schnelzer, A., & Bokoch, G. M. (2004). Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase. Molecular Cell, 15(1), 117–27.

    PubMed  CAS  Google Scholar 

  118. Chew, T. L., et al. (1998). Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (gamma-PAK). Journal of Muscle Research and Cell Motility, 19(8), 839–54.

    PubMed  CAS  Google Scholar 

  119. Ramos, E., Wysolmerski, R. B., & Masaracchia, R. A. (1997). Myosin phosphorylation by human cdc42-dependent S6/H4 kinase/gammaPAK from placenta and lymphoid cells. Recept Signal Transduct, 7(2), 99–110.

    PubMed  CAS  Google Scholar 

  120. Goto, H., et al. (2002). Phosphorylation and reorganization of vimentin by p21-activated kinase (PAK). Genes Cells, 7(2), 91–7.

    PubMed  CAS  Google Scholar 

  121. Li, Q. F., et al. (2006). Critical role of vimentin phosphorylation at Ser-56 by p21-activated kinase in vimentin cytoskeleton signaling. 281(45), 34716–24.

  122. Tang, D. D., Bai, Y., & Gunst, S. J. (2005). Silencing of p21-activated kinase attenuates vimentin phosphorylation on Ser-56 and reorientation of the vimentin network during stimulation of smooth muscle cells by 5-hydroxytryptamine. Biochemical Journal, 388(Pt 3), 773–83.

    PubMed  CAS  Google Scholar 

  123. Wang, R., et al. (2007). Dissociation of Crk-associated substrate from the vimentin network is regulated by p21-activated kinase on ACh activation of airway smooth muscle. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292(1), L240–8.

    PubMed  CAS  Google Scholar 

  124. Chan, W., et al. (2002). Vimentin intermediate filament reorganization by Cdc42: involvement of PAK and p70 S6 kinase. European Journal of Cell Biology, 81(12), 692–701.

    PubMed  CAS  Google Scholar 

  125. Roig, J., et al. (2000). Functional interaction between c-Abl and the p21-activated protein kinase g-PAK. PNAS, 97(26), 14346–14351.

    PubMed  CAS  Google Scholar 

  126. Jung, J. H., et al. (2008). Phosphorylation of c-Abl by protein kinase Pak2 regulates differential binding of ABI2 and CRK. Biochemistry, 47(3), 1094–104.

    PubMed  CAS  Google Scholar 

  127. Tran, N. H., Wu, X., & Frost, J. A. (2005). B-Raf and Raf-1 are regulated by distinct autoregulatory mechanisms. Journal of Biological Chemistry, 280(16), 16244–53.

    PubMed  CAS  Google Scholar 

  128. Huang, Z., Traugh, J. A., & Bishop, J. M. (2004). Negative control of the Myc protein by the stress-responsive kinase Pak2. Molecular and Cellular Biology, 24(4), 1582–94.

    PubMed  CAS  Google Scholar 

  129. Edin, M. L., & Juliano, R. L. (2005). Raf-1 serine 338 phosphorylation plays a key role in adhesion-dependent activation of extracellular signal-regulated kinase by epidermal growth factor. Molecular and Cellular Biology, 25(11), 4466–75.

    PubMed  CAS  Google Scholar 

  130. Chaudhary, A., et al. (2000). Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338. Current Biology, 10(9), 551–4.

    PubMed  CAS  Google Scholar 

  131. Zang, M., Hayne, C., & Luo, Z. (2002). Interaction between active Pak1 and Raf-1 is necessary for phosphorylation and activation of Raf-1. Journal of Biological Chemistry, 277(6), 4395–405.

    PubMed  CAS  Google Scholar 

  132. Wang, R. A., et al. (2002). P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia in mammary epithelium. European Molecular Biology Organization Journal, 21(20), 5437–47.

    CAS  Google Scholar 

  133. Rayala, S. K., et al. (2006). P21-activated kinase 1 regulation of estrogen receptor-alpha activation involves serine 305 activation linked with serine 118 phosphorylation. Cancer Research, 66(3), 1694–701.

    PubMed  CAS  Google Scholar 

  134. Frost, J. A., et al. (1996). Actions of Rho family small G proteins and p21 activated protein kinases on Mitogen-Activated Protein Kinase family members. Molecular and Cellular Biology, 16, 3707–3713 July.

    PubMed  CAS  Google Scholar 

  135. Slack-Davis, J. K., et al. (2003). PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. Journal Cell Biology, 162(2), 281–91.

    CAS  Google Scholar 

  136. Eblen, S. T., et al. (2004). Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion. Molecular and Cellular Biology, 24(6), 2308–17.

    PubMed  CAS  Google Scholar 

  137. Coles, L. C., & Shaw, P. E. (2002). PAK1 primes MEK1 for phosphorylation by Raf-1 kinase during cross-cascade activation of the ERK pathway. Oncogene, 21(14), 2236–44.

    PubMed  CAS  Google Scholar 

  138. Gallagher, E. D., et al. (2002). Binding of JNK/SAPK to MEKK1 is regulated by phosphorylation. Journal of Biological Chemistry, 277(48), 45785–92.

    PubMed  CAS  Google Scholar 

  139. Orton, K. C., et al. (2004). Phosphorylation of Mnk1 by caspase-activated Pak2/gamma-PAK inhibits phosphorylation and interaction of eIF4G with Mnk. Journal of Biological Chemistry, 279(37), 38649–57.

    PubMed  CAS  Google Scholar 

  140. Tuazon, P. T., et al. (2002). p21-activated protein kinase gamma-PAK in pituitary secretory granules phosphorylates prolactin. FEBS Lett, 515(1–3), 84–8.

    PubMed  CAS  Google Scholar 

  141. Tang, Y., et al. (2000). The Akt proto-oncogene links Ras to Pak and cell survival signals. Journal of Biological Chemistry, 275, 9106–9109.

    PubMed  CAS  Google Scholar 

  142. Liberali, P., et al. (2008). The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. European Molecular Biology Organization Journal, 27(7), 970–81.

    CAS  Google Scholar 

  143. Manavathi, B., Rayala, S. K., & Kumar, R. (2007). Phosphorylation-dependent regulation of stability and transforming potential of ETS transcriptional factor ESE-1 by p21-activated kinase 1. Journal of Biological Chemistry, 282(27), 19820–30.

    PubMed  CAS  Google Scholar 

  144. Wang, J., et al. (1999). Reciprocal Signaling between Heterotrimeric G Proteins and the p21-stimulated Protein Kinase. Journal of Biological Chemistry, 274, 31641–31647.

    PubMed  CAS  Google Scholar 

  145. Martyn, K. D., et al. (2005). p21-activated kinase (Pak) regulates NADPH oxidase activation in human neutrophils. Blood, 106(12), 3962–9.

    PubMed  CAS  Google Scholar 

  146. Ahmed, S., et al. (1998). Cryptic Rac-binding and p21(Cdc42Hs/Rac)-activated kinase phosphorylation sites of NADPH oxidase component p67(phox). Journal of Biological Chemistry, 273(25), 15693–701.

    PubMed  CAS  Google Scholar 

  147. Vadlamudi, R. K., et al. (2005). An essential role of Pak1 phosphorylation of SHARP in Notch signaling. Oncogene, 24(28), 4591–6.

    PubMed  CAS  Google Scholar 

  148. Wang, R. A., et al. (2003). Essential functions of p21-activated kinase 1 in morphogenesis and differentiation of mammary glands. Journal of Cell Biology, 161(3), 583–92.

    PubMed  CAS  Google Scholar 

  149. Miah, S. M., et al. (2004). Activation of Syk protein tyrosine kinase in response to osmotic stress requires interaction with p21-activated protein kinase Pak2/gamma-PAK. Molecular and Cellular Biology, 24(1), 71–83.

    PubMed  CAS  Google Scholar 

  150. Sakurada, K., et al. (2002). Synapsin I is phosphorylated at Ser603 by p21-activated kinases (PAKs) in vitro and in PC12 cells stimulated with bradykinin. Journal of Biological Chemistry, 277(47), 45473–9.

    PubMed  CAS  Google Scholar 

  151. Buscemi, N., et al. (2002). p21-activated kinase increases the calcium sensitivity of rat triton-skinned cardiac muscle fiber bundles via a mechanism potentially involving novel phosphorylation of troponin I. Circulation Research, 91(6), 509–16.

    PubMed  CAS  Google Scholar 

  152. Aoki, H., et al. (2007). Phosphorylated Pak1 level in the cytoplasm correlates with shorter survival time in patients with glioblastoma. Clinical Cancer Research, 13(22 Pt 1), 6603–9.

    PubMed  CAS  Google Scholar 

  153. Liu, Y., et al. (2008). The pak4 protein kinase plays a key role in cell survival and tumorigenesis in athymic mice. Mol Cancer Res, 6(7), 1215–24.

    PubMed  CAS  Google Scholar 

  154. Ching, Y. P., et al. (2007). P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Research, 67(8), 3601–8.

    PubMed  CAS  Google Scholar 

  155. O’Sullivan, G. C., et al. (2007). Modulation of p21-activated kinase 1 alters the behavior of renal cell carcinoma. International Journal of Cancer, 121(9), 1930–40.

    CAS  Google Scholar 

  156. Mahlamaki, E. H., et al. (2004). High-resolution genomic and expression profiling reveals 105 putative amplification target genes in pancreatic cancer. Neoplasia, 6(5), 432–9.

    PubMed  CAS  Google Scholar 

  157. Carter, J. H., et al. (2004). Pak-1 expression increases with progression of colorectal carcinomas to metastasis. Clinical Cancer Research, 10(10), 3448–56.

    PubMed  CAS  Google Scholar 

  158. Ito, M., et al. (2007). P21-activated kinase 1: a new molecular marker for intravesical recurrence after transurethral resection of bladder cancer. Journal of Urology, 178(3 Pt 1), 1073–9.

    PubMed  CAS  Google Scholar 

  159. Schraml, P., et al. (2003). Combined array comparative genomic hybridization and tissue microarray analysis suggest PAK1 at 11q13.5-q14 as a critical oncogene target in ovarian carcinoma. American Journal of Pathology, 163(3), 985–92.

    PubMed  CAS  Google Scholar 

  160. Davidson, B., Shih, I. M. & Wang, T. L. (2008). Different clinical roles for p21-activated kinase-1 in primary and recurrent ovarian carcinoma. Hum Pathol.

  161. Kaur, R., et al. (2008). Increased PAK6 expression in prostate cancer and identification of PAK6 associated proteins. Prostate, 68(14), 1510–6.

    PubMed  CAS  Google Scholar 

  162. Mao, X., et al. (2003). Genomic alterations in blastic natural killer/extranodal natural killer-like T cell lymphoma with cutaneous involvement. Journal of Investigative Dermatology, 121(3), 618–27.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

J.F. is supported by a grant from the NIH (GM48241) and B.D. is supported by the Novartis Foundation and the Swiss National Foundation (PBBSA-120519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Field.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dummler, B., Ohshiro, K., Kumar, R. et al. Pak protein kinases and their role in cancer. Cancer Metastasis Rev 28, 51–63 (2009). https://doi.org/10.1007/s10555-008-9168-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-008-9168-1

Keywords

Navigation