Skip to main content

Advertisement

Log in

Small nucleolar RNAs functioning and potential roles in cancer

  • Review
  • Published:
Tumor Biology

Abstract

Non-coding RNAs (ncRNAs) are important regulatory molecules involved in various physiological and pathological cellular processes. Small nucleolar RNAs (snoRNAs), subclass of small ncRNAs, have been considered important but unglamorous elements in the production of protein synthesis machinery of cells. However, recent evidence has indicated that these non-coding RNAs might have a crucial role also in controlling cell behavior, and snoRNAs dysfunction could significantly contribute to carcinogenesis. Here, we summarize the most important aspects of snoRNAs biology, their functioning in cancer cell, and potential usage in diagnosis or as a new class of therapeutic targets in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kiss T. Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell. 2002;109:145–8.

    Article  CAS  PubMed  Google Scholar 

  2. Bachellerie JP, Cavaille J, Huttenhofer A. The expanding snoRNA world. Biochimie. 2002;84:775–90.

    Article  CAS  PubMed  Google Scholar 

  3. Cavaille J, Bachellerie JP. SnoRNA-guided ribose methylation of rRNA: structural features of the guide RNA duplex influencing the extent of the reaction. Nucleic Acids Res. 1998;26:1576–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maden BE. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol. 1990;39:241–303.

    Article  CAS  PubMed  Google Scholar 

  5. Tollervey D, Kiss T. Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol. 1997;9:337–42.

    Article  CAS  PubMed  Google Scholar 

  6. Brimacombe R, Mitchell P, Osswald M, Stade K, Bochkariov D. Clustering of modified nucleotides at the functional center of bacterial ribosomal RNA. FASEB J. 1993;7:161–7.

    CAS  PubMed  Google Scholar 

  7. Kiss-Laszlo Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell. 1996;85:1077–88.

    Article  CAS  PubMed  Google Scholar 

  8. Weinstein LB, Steitz JA. Guided tours: from precursor snoRNA to functional snoRNP. Curr Opin Cell Biol. 1999;11:378–84.

    Article  CAS  PubMed  Google Scholar 

  9. Williams GT, Hughes JP, Stoneman V, Anderson CL, McCarthy NJ, Mourtada-Maarabouni M, et al. Isolation of genes controlling apoptosis through their effects on cell survival. Gene Ther Mol Biol. 2006;10:255–62.

    PubMed  PubMed Central  Google Scholar 

  10. Dong XY, Guo P, Boyd J, Sun X, Li Q, Zhou W, et al. Implication of snoRNA U50 in human breast cancer. J Genet Genomics. 2009;36:447–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dong XY, Rodriguez C, Guo P, Sun X, Talbot JT, Zhou W, et al. SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet. 2008;17:1031–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gee HE, Buffa FM, Camps C, Ramachandran A, Leek R, Taylor M, et al. The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer. 2011;104:1168–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liao J, Yu L, Mei Y, Guarnera M, Shen J, Li R, et al. Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer. 2010;9:198.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Moller S, Trapman J, et al. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene. 2012;31:978–91.

    Article  CAS  PubMed  Google Scholar 

  15. Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F, Williams GT. Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J Cell Sci. 2008;121:939–46.

    Article  CAS  PubMed  Google Scholar 

  16. Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene. 2009;28:195–208.

    Article  CAS  PubMed  Google Scholar 

  17. Dieci G, Preti M, Montanini B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics. 2009;94:83–8.

    Article  CAS  PubMed  Google Scholar 

  18. Filipowicz W, Pogacic V. Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol. 2002;14:319–27.

    Article  CAS  PubMed  Google Scholar 

  19. Watkins NJ, Bohnsack MT. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA. 2012;3:397–414.

    Article  CAS  PubMed  Google Scholar 

  20. Giorgi C, Fatica A, Nagel R, Bozzoni I. Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease. EMBO J. 2001;20:6856–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reichow SL, Hamma T, Ferre-D’Amare AR, Varani G. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res. 2007;35:1452–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boulon S, Verheggen C, Jady BE, Girard C, Pescia C, Paul C, et al. PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Mol Cell. 2004;16:777–87.

    Article  CAS  PubMed  Google Scholar 

  23. Pradet-Balade B, Girard C, Boulon S, Paul C, Azzag K, Bordonne R, et al. CRM1 controls the composition of nucleoplasmic pre-snoRNA complexes to licence them for nucleolar transport. EMBO J. 2011;30:2205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bortolin ML, Kiss T. Human U19 intron-encoded snoRNA is processed from a long primary transcript that possesses little potential for protein coding. RNA. 1998;4:445–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith CM, Steitz JA. Sno storm in the nucleolus: new roles for myriad small RNPs. Cell. 1997;89:669–72.

    Article  CAS  PubMed  Google Scholar 

  26. Smith CM, Steitz JA. Classification of GAS5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol. 1998;18:6897–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mannoor K, Liao J, Jiang F. Small nucleolar RNAs in cancer. Biochim Biophys Acta. 2012;1826:121–8.

    Google Scholar 

  28. Panse VG, Johnson AW. Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem Sci. 2010;35:260–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cavaille J, Bachellerie JP. Processing of fibrillarin-associated snoRNAs from pre-mRNA introns: an exonucleolytic process exclusively directed by the common stem-box terminal structure. Biochimie. 1996;78:443–56.

    Article  CAS  PubMed  Google Scholar 

  30. Caffarelli E, Fatica A, Prislei S, De Gregorio E, Fragapane P, Bozzoni I. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. EMBO J. 1996;15:1121–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lange TS, Borovjagin A, Maxwell ES, Gerbi SA. Conserved boxes C and D are essential nucleolar localization elements of U14 and U8 snoRNAs. EMBO J. 1998;17:3176–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Samarsky DA, Fournier MJ, Singer RH, Bertrand E. The snoRNA box C/D motif directs nucleolar targeting and also couples snoRNA synthesis and localization. EMBO J. 1998;17:3747–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Villa T, Ceradini F, Bozzoni I. Identification of a novel element required for processing of intron-encoded box C/D small nucleolar RNAs in Saccharomyces cerevisiae. Mol Cell Biol. 2000;20:1311–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kiss-Laszlo Z, Henry Y, Kiss T. Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA. EMBO J. 1998;17:797–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tycowski KT, Shu MD, Steitz JA. A mammalian gene with introns instead of exons generating stable RNA products. Nature. 1996;379:464–6.

    Article  CAS  PubMed  Google Scholar 

  36. Kiss T. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 2001;20:3617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cavaille J, Nicoloso M, Bachellerie JP. Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature. 1996;383:732–5.

    Article  CAS  PubMed  Google Scholar 

  38. Nicoloso M, Qu LH, Michot B, Bachellerie JP. Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2′-O-ribose methylation of rRNAs. J Mol Biol. 1996;260:178–95.

    Article  CAS  PubMed  Google Scholar 

  39. Makarova JA, Ivanova SM, Tonevitsky AG, Grigoriev AI. New functions of small nucleolar RNAs. Biochemistry (Mosc). 2013;78:638–50.

    Article  CAS  Google Scholar 

  40. Borovjagin AV, Gerbi SA. U3 small nucleolar RNA is essential for cleavage at sites 1, 2 and 3 in pre-rRNA and determines which rRNA processing pathway is taken in Xenopus oocytes. J Mol Biol. 1999;286:1347–63.

    Article  CAS  PubMed  Google Scholar 

  41. Enright CA, Maxwell ES, Eliceiri GL, Sollner-Webb B. 5′ETS rRNA processing facilitated by four small RNAs: U14, E3, U17, and U3. RNA. 1996;2:1094–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tycowski KT, Shu MD, Steitz JA. Requirement for intron-encoded U22 small nucleolar RNA in 18 s ribosomal RNA maturation. Science. 1994;266:1558–61.

    Article  CAS  PubMed  Google Scholar 

  43. Peculis BA, Steitz JA. Disruption of U8 nucleolar snRNA inhibits 5.8s and 28s rRNA processing in the Xenopus oocyte. Cell. 1993;73:1233–45.

    Article  CAS  PubMed  Google Scholar 

  44. Cavaille J, Hadjiolov AA, Bachellerie JP. Processing of mammalian rRNA precursors at the 3′ end of 18s rRNA. Identification of cis-acting signals suggests the involvement of U13 small nucleolar RNA. Eur J Biochem. 1996;242:206–13.

    Article  CAS  PubMed  Google Scholar 

  45. Balakin AG, Smith L, Fournier MJ. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell. 1996;86:823–34.

    Article  CAS  PubMed  Google Scholar 

  46. Ganot P, Caizergues-Ferrer M, Kiss T. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 1997;11:941–56.

    Article  CAS  PubMed  Google Scholar 

  47. Ganot P, Bortolin ML, Kiss T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell. 1997;89:799–809.

    Article  CAS  PubMed  Google Scholar 

  48. Lafontaine DL, Bousquet-Antonelli C, Henry Y, Caizergues-Ferrer M, Tollervey D. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 1998;12:527–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rashid R, Liang B, Baker DL, Youssef OA, He Y, Phipps K, et al. Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita. Mol Cell. 2006;21:249–60.

    Article  CAS  PubMed  Google Scholar 

  50. Morrissey JP, Tollervey D. Yeast Snr30 is a small nucleolar RNA required for 18s rRNA synthesis. Mol Cell Biol. 1993;13:2469–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Baxter-Roshek JL, Petrov AN, Dinman JD. Optimization of ribosome structure and function by rRNA base modification. PLoS ONE. 2007;2:e174.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Blanchard SC, Puglisi JD. Solution structure of the a loop of 23s ribosomal RNA. Proc Natl Acad Sci U S A. 2001;98:3720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu B, Liang XH, Piekna-Przybylska D, Liu Q, Fournier MJ. Mis-targeted methylation in rRNA can severely impair ribosome synthesis and activity. RNA Biol. 2008;5:249–54.

    Article  CAS  PubMed  Google Scholar 

  54. Basu A, Das P, Chaudhuri S, Bevilacqua E, Andrews J, Barik S, et al. Requirement of rRNA methylation for 80s ribosome assembly on a cohort of cellular internal ribosome entry sites. Mol Cell Biol. 2011;31:4482–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Henras AK, Dez C, Henry Y. RNA structure and function in C/D and H/ACA s(no) RNPs. Curr Opin Struct Biol. 2004;14:335–43.

    Article  CAS  PubMed  Google Scholar 

  56. Darzacq X, Jady BE, Verheggen C, Kiss AM, Bertrand E, Kiss T. Cajal body-specific small nuclear RNAs: a novel class of 2′-o-methylation and pseudouridylation guide RNAs. EMBO J. 2002;21:2746–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tycowski KT, You ZH, Graham PJ, Steitz JA. Modification of U6 spliceosomal RNA is guided by other small RNAs. Mol Cell. 1998;2:629–38.

    Article  CAS  PubMed  Google Scholar 

  58. Decatur WA, Fournier MJ. rRNA modifications and ribosome function. Trends Biochem Sci. 2002;27:344–51.

    Article  CAS  PubMed  Google Scholar 

  59. Williams GT, Farzaneh F. Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer. 2012;12:84–8.

    CAS  PubMed  Google Scholar 

  60. Ender C, Krek A, Friedlander MR, Beitzinger M, Weinmann L, Chen W, et al. A human snoRNA with microRNA-like functions. Mol Cell. 2008;32:519–28.

    Article  CAS  PubMed  Google Scholar 

  61. Brameier M, Herwig A, Reinhardt R, Walter L, Gruber J. Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res. 2011;39:675–86.

    Article  CAS  PubMed  Google Scholar 

  62. Scott MS, Avolio F, Ono M, Lamond AI, Barton GJ. Human miRNA precursors with box H/ACA snoRNA features. PLoS Comput Biol. 2009;5:e1000507.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS. Small RNAs derived from snoRNAs. RNA. 2009;15:1233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ono M, Scott MS, Yamada K, Avolio F, Barton GJ, Lamond AI. Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Res. 2011;39:3879–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Scott MS, Ono M. From snoRNA to miRNA: dual function regulatory non-coding RNAs. Biochimie. 2011;93:1987–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dez C, Henras A, Faucon B, Lafontaine D, Caizergues-Ferrer M, Henry Y. Stable expression in yeast of the mature form of human telomerase RNA depends on its association with the box H/ACA small nucleolar RNP proteins Cbf5p, Nhp2p and Nop10p. Nucleic Acids Res. 2001;29:598–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mitchell JR, Cheng J, Collins K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol Cell Biol. 1999;19:567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pogacic V, Dragon F, Filipowicz W. Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins Nhp2 and Nop10. Mol Cell Biol. 2000;20:9028–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kishore S, Khanna A, Zhang Z, Hui J, Balwierz PJ, Stefan M, et al. The snoRNA MBII-52 (Snord 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet. 2010;19:1153–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2c. Science. 2006;311:230–2.

    Article  CAS  PubMed  Google Scholar 

  71. Cavaille J, Buiting K, Kiefmann M, Lalande M, Brannan CI, Horsthemke B, et al. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. Proc Natl Acad Sci U S A. 2000;97:14311–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Canton H, Emeson RB, Barker EL, Backstrom JR, Lu JT, Chang MS, et al. Identification, molecular cloning, and distribution of a short variant of the 5-hydroxytryptamine2C receptor produced by alternative splicing. Mol Pharmacol. 1996;50:799–807.

    CAS  PubMed  Google Scholar 

  73. Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders-Bush E, et al. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature. 1997;387:303–8.

    Article  CAS  PubMed  Google Scholar 

  74. Suzuki A, Kogo R, Kawahara K, Sasaki M, Nishio M, Maehama T, et al. A new picture of nucleolar stress. Cancer Sci. 2012;103:632–7.

    Article  CAS  PubMed  Google Scholar 

  75. Scott MS, Ono M. From snoRNA to miRNA: dual function regulatory non-coding RNAs. Biochimie. 1987;93:1987–92.

    Article  Google Scholar 

  76. Liu ZH, Yang G, Zhao T, Cao GJ, Xiong L, Xia W, et al. Small ncRNA expression and regulation under hypoxia in neural progenitor cells. Cell Mol Neurobiol. 2011;31:1–5.

    Article  PubMed  Google Scholar 

  77. Michel CI, Holley CL, Scruggs BS, Sidhu R, Brookheart RT, Listenberger LL, et al. Small nucleolar RNAs U32a, U33, and U35a are critical mediators of metabolic stress. Cell Metab. 2011;14:33–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chu L, Su MY, Maggi Jr LB, Lu L, Mullins C, Crosby S, et al. Multiple myeloma-associated chromosomal translocation activates orphan snoRNA ACA11 to suppress oxidative stress. J Clin Invest. 2012;122:2793–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tanaka R, Satoh H, Moriyama M, Satoh K, Morishita Y, Yoshida S, et al. Intronic U50 small-nucleolar-RNA (snoRNA) host gene of no protein-coding potential is mapped at the chromosome breakpoint t (3;6) (q27;q15) of human B-cell lymphoma. Genes to cells : devoted to mol & cell mech. 2000;5:277–87.

    Article  CAS  Google Scholar 

  80. Goeze A, Schluns K, Wolf G, Thasler Z, Petersen S, Petersen I. Chromosomal imbalances of primary and metastatic lung adenocarcinomas. J Pathol. 2002;196:8–16.

    Article  PubMed  Google Scholar 

  81. Mei YP, Liao JP, Shen J, Yu L, Liu BL, Liu L, et al. Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene. 2012;31:2794–804.

    Article  CAS  PubMed  Google Scholar 

  82. Thompson DM, Lu C, Green PJ, Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA (New York, NY). 2008;14:2095–103.

    Article  CAS  Google Scholar 

  83. Chang LS, Lin SY, Lieu AS, Wu TL. Differential expression of human 5s snoRNA genes. Biochem Biophys Res Commun. 2002;299:196–200.

    Article  CAS  PubMed  Google Scholar 

  84. Li R, Wang H, Bekele BN, Yin Z, Caraway NP, Katz RL, et al. Identification of putative oncogenes in lung adenocarcinoma by a comprehensive functional genomic approach. Oncogene. 2006;25:2628–35.

    Article  CAS  PubMed  Google Scholar 

  85. Jiang F, Yin Z, Caraway NP, Li R, Katz RL. Genomic profiles in stage I primary non small cell lung cancer using comparative genomic hybridization analysis of cDNA microarrays. Neoplasia (New York, NY). 2004;6:623–35.

    Article  CAS  Google Scholar 

  86. Gebhart E. Double minutes, cytogenetic equivalents of gene amplification, in human neoplasia—a review. Clin Transl Oncol. 2005;7:477–85.

    Article  PubMed  Google Scholar 

  87. Schwab M. Oncogene amplification in solid tumors. Semin Cancer Biol. 1999;9:319–25.

    Article  CAS  PubMed  Google Scholar 

  88. Bell DW. Our changing view of the genomic landscape of cancer. J Pathol. 2010;220:231–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Xu G, Yang F, Ding CL, Zhao LJ, Ren H, Zhao P, et al. Small nucleolar RNA 113–1 suppresses tumorigenesis in hepatocellular carcinoma. Mol Cancer. 2014;13:216.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Schneider C, King RM, Philipson L. Genes specifically expressed at growth arrest of mammalian cells. Cell. 1988;54:787–93.

    Article  CAS  PubMed  Google Scholar 

  91. Amaldi F, Pierandrei-Amaldi P. Top genes: a translationally controlled class of genes including those coding for ribosomal proteins. Prog Mol Subcell Biol. 1997;18:1–17.

    Article  CAS  PubMed  Google Scholar 

  92. Nakamura Y, Takahashi N, Kakegawa E, Yoshida K, Ito Y, Kayano H, et al. The GAS5 (growth arrest-specific transcript 5) gene fuses to BCL6 as a result of t (1;3) (q25;q27) in a patient with B-cell lymphoma. Cancer Genet Cytogenet. 2008;182:144–9.

    Article  CAS  PubMed  Google Scholar 

  93. Yamashita A, Izumi N, Kashima I, Ohnishi T, Saari B, Katsuhata Y, et al. SMG-8 and SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the mRNA surveillance complex during nonsense-mediated mRNA decay. Genes Dev. 2009;23:1091–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Askarian-Amiri ME, Crawford J, French JD, Smart CE, Smith MA, Clark MB, et al. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA (New York, NY). 2011;17:878–91.

    Article  CAS  Google Scholar 

  95. Xiao J, Lin H, Luo X, Wang Z. Mir-605 joins p53 network to form a p53:Mir-605:Mdm2 positive feedback loop in response to stress. EMBO J. 2010;30:524–32.

    Article  Google Scholar 

  96. Montanaro L. Dyskerin and cancer: more than telomerase. The defect in mRNA translation helps in explaining how a proliferative defect leads to cancer. J Pathol. 2010;222:345–9.

    Article  CAS  PubMed  Google Scholar 

  97. Gupta V, Kumar A. Dyskeratosis congenita. Adv Exp Med Biol. 2010;685:215–9.

    Article  CAS  PubMed  Google Scholar 

  98. Ruggero D, Grisendi S, Piazza F, Rego E, Mari F, Rao PH, et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Sci (New York, NY). 2003;299:259–62.

    Article  CAS  Google Scholar 

  99. Appaiah HN, Goswami CP, Mina LA, Badve S, Sledge Jr GW, Liu Y, et al. Persistent upregulation of U6:Snord44 small RNA ratio in the serum of breast cancer patients. Breast Cancer Res. 2011;13:R86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861–74.

    Article  CAS  PubMed  Google Scholar 

  101. Di Leva G, Garofalo M (2013) Non-coding RNAs and cancer. In: Oncogene and cancer—from bench to clinic. License InTech.

Download references

Acknowledgments

This work was supported by the project “Employment of Best Young Scientists for International Cooperation Empowerment” (CZ.1.07/2.3.00/30.0037), co-financed from the European Social Fund and the state budget of the Czech Republic, by the project “CEITEC—Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068) and by the project MZ CR–RVO (MOU, 00209805). The authors would like to thank Andrej Besse for preparation of the figures and John B. Smith for proofreading the manuscript.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Slaby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorenoor, N., Slaby, O. Small nucleolar RNAs functioning and potential roles in cancer. Tumor Biol. 36, 41–53 (2015). https://doi.org/10.1007/s13277-014-2818-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2818-8

Keywords

Navigation