Skip to main content

TOP Genes: A Translationally Controlled Class of Genes Including Those Coding for Ribosomal Proteins

  • Chapter
Cytoplasmic fate of messenger RNA

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 18))

Abstract

In the early 1980s, it was recognized that the equimolar accumulation of ribosomal proteins (r-proteins) in eukaryotes is maintained by coordinated regulation at various levels of gene expression, from transcription to protein stability. With the possible exception of yeast, the translational control of mRNA utilization emerged to be the prevalent regulatory mechanism involved. It was also soon realized that the corresponding r-protein genes share a common architecture, mainly in the region surrounding the 5´ end, that was found to be involved in the coregulated expression of gene activity at the transcriptional and translational levels. As described below the most typical common structural feature is the transcription initiation site which is always situated within a 12–25 pyrimidine tract flanked by regions of high G + C content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JM, Cory S (1975) Modified nucleosides and bizarre 5´-termini in mouse myeloma mRNA. Nature 255: 28–33

    Article  PubMed  CAS  Google Scholar 

  • Agrawal AG, Bowman LH (1987) Transcriptional and translational regulation of ribosomal protein formation during mouse myoblast differentiation. J Biol Chem 262: 4868–4875

    PubMed  CAS  Google Scholar 

  • Al-Atia GR, Fruscoloni P, Jacobs-Lorena M (1985) Translational regulation of mRNAs for ribosomal proteins during early Drosophila development. Biochemistry 24: 5798–5803

    Article  PubMed  CAS  Google Scholar 

  • Aloni R, Peleg D, Meyuhas O (1992) Selective translational control and nonspecific post-transcriptional regulation of ribosomal protein gene expression during development and regeneration of rat liver. Mol Cell Biol 12: 2203–2212

    PubMed  CAS  Google Scholar 

  • Amaldi F, Pierandrei-Arnaldi P (1991) Translational regulation of the expression of ribosomal protein genes in Xenopus laevis. In: Thach RE (ed) Translationally regulated genes in higher eukaryotes. Karger AG, Basel, pp 93–105

    Google Scholar 

  • Amaldi F, Bozzoni I, Beccari E, Pierandrei-Amaldi P (1989) Expression of ribosomal protein genes and regulation of ribosome biosynthesis in Xenopus development. Trends Biochem Sci 14:175–178

    Article  PubMed  CAS  Google Scholar 

  • Avni D, Shama S, Loreni F, Meyuhas O (1994) Vertebrate mRNAs with a 5´-terminal pyrimidine tract are candidates for translational repression in quiescent cells: characterization of the translational cis -regulatory element. Mol Cell Biol 14:3822–3833

    PubMed  CAS  Google Scholar 

  • Backer RT, Board PG 1991 The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes. Nucl Acids Res 19:1035–1040

    Article  Google Scholar 

  • Bagni C, Mariottini P, Terrenato L, Arnaldi F (1992) Individual variability in the translational regulation of ribosomal protein synthesis in Xenopus . Mol Gen Genet 234:60–64

    PubMed  CAS  Google Scholar 

  • Baum EZ, Wormington WM (1985) Coordinate expression of ribosomal protein genes during Xenopus development. Dev Biol 111:488–489

    Article  PubMed  CAS  Google Scholar 

  • Baum EZ, Hyman LE, Wormington WM (1988) Post-transcriptional control of ribosomal protein L1 accumulation in Xenopus oocytes. Dev Biol 126:141–149

    Article  PubMed  CAS  Google Scholar 

  • Bowman LH (1987) The synthesis of ribosomal proteins S16 and L32 is not autogenously regulated during myoblast differentiation. Mol Cell Biol 7:4464–4471

    PubMed  CAS  Google Scholar 

  • Bozzoni I, Beccari E, Luo Z-X, Arnaldi F, Pierandrei-Amaldi P, Campioni N (1981) Xenopus laevis ribosomal protein genes: isolation of recombinant cDNA clones and study of the genomic organization. Nucl Acids Res 9:1069–1086

    Google Scholar 

  • Caizergues-Ferrer M, Mariottini P, Curie C, Lapeyre B, Gas N, Amalric F, Arnaldi F (1989) Nucleolin from Xenopus laevis : cDNA cloning and expression during development. Genes Dev 3: 324–333

    Article  PubMed  CAS  Google Scholar 

  • Cardinali B, Campioni N, Pierandrei-Amaldi P (1987) Ribosomal protein, histone and calmodulin mRNAs are differently regulated at the translational level during oogenesis of Xenopus laevis . Exp Cell Res 169: 432–441

    Article  PubMed  CAS  Google Scholar 

  • Cardinali B, Di Cristina M, Pierandrei-Amaldi P (1993) Interaction of proteins with the mRNA for ribosomal protein L1 in Xenopus : structural characterization of in vivo complexes and identification of proteins that bind in vitro to its 5´UTR. Nucl Acids Res 21: 2301–2308

    Article  PubMed  CAS  Google Scholar 

  • Chitpatima ST, Makrides S, Bandyopadhyay R, Browerman G (1988) Nucleotide sequence for a major messenger RNA for a 21-kilodalton polypeptide that is under translational control in mouse tumor cells. Nucl Acids Res 16: 2350

    Article  PubMed  CAS  Google Scholar 

  • Cooper HL, Braverman R (1977) Free ribosomes and growth stimulation in human peripheral lymphocytes: activation of free ribosomes as an essential event in growth stimulation. J Cell Physiol 93: 213–226

    Article  PubMed  CAS  Google Scholar 

  • Cooper HL, Braverman R (1980) Protein synthesis in resting and growth-stimulated human peripheral lymphocytes. Evidence for regulation by a non-messenger RNA. Exp Cell Res 127: 351–359

    Article  PubMed  CAS  Google Scholar 

  • Craig N, Perry RP (1971) Persistent cytoplasmic synthesis of ribosomal proteins during the selective inhibition of ribosome RNA synthesis. Nature New Biol 229: 75–80

    Article  PubMed  CAS  Google Scholar 

  • Duncan R, McConkey EH (1982) Rapid alterations in initiation rate and recruitment of inactive RNA are temporally correlated with S6 phosphorylation. Eur J Biochem 123: 539–544

    Article  PubMed  CAS  Google Scholar 

  • Ferrari S, Thomas G (1994) S6 phosphorylation and the p70s6k/p85s6k. Crit Rev Biochem Mol Biol 29: 385–413

    Article  PubMed  CAS  Google Scholar 

  • Frydenberg J, Poulse K, Petersen AKB, Lund A, Olesen OF (1991) Isolation and characterization of the gene encoding EF-laO, an elongation factor 1-a expressed during early development of Xenopus laevis . Gene 109: 185–192

    Article  PubMed  CAS  Google Scholar 

  • Geyer PK, Meyuhas O, Perry RP, Johnson LF (1982) Regulation of ribosomal protein mRNA content and translation in growth-stimulated mouse fibroblasts. Mol Cell Biol 2: 685–693

    PubMed  CAS  Google Scholar 

  • Hammond ML, Merrick W, Bowmann LH (1991) Sequences mediating the translation of mouse SI6 ribosomal protein mRNA during myoblast differentiation and in vitro, and possible control points for the in vitro translation. Genes Dev 5: 1723–1736

    Article  PubMed  CAS  Google Scholar 

  • Hiremath LS, Webb NR, Rhoads RE (1985) Immunological detection of the messenger RNA cap-binding protein. J Biol Biochem 260: 7843–7849

    CAS  Google Scholar 

  • Hershey JWB (1991) Translational control in mammalian cells. Annu Rev Biochem 60: 717–755

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Hershey JB (1989) Translational initiation factor expression and ribosomal protein gene expression are repressed coordinately but by different mechanisms in murine lymphosarcoma cells trated with glucocorticois. Mol Cell Biol 9: 3679–3684

    PubMed  CAS  Google Scholar 

  • Hyman LE, Wormington WM (1988) Translation inactivation of ribosomal protein mRNAs during Xenopus oocyte maturation. Genes Dev 2: 598–605

    Article  PubMed  CAS  Google Scholar 

  • Jacobs-Lorena M, Fried HM (1987) Translational regulation of ribosomal protein genes expression in eukaryotes. In: Ilan J (ed) Translational regulation of gene expression. Plenum Press, New York, pp 63–85

    Google Scholar 

  • Jefferies HB, Thomas G, Thomas G (1994a) Elongation factor-la mRNA is selectively translated following mitogenic stimulation. J Biol Chem 269: 4367–4372

    CAS  Google Scholar 

  • Jefferies HB, Reinhard C, Kozma SC, Thomas G (1994b) Rapamycin selectively represses translation of the ‘polypyrimidine tract’ mRNA family. Proc Natl Acad Sci USA 91: 4441–4445

    Article  CAS  Google Scholar 

  • Kaspar RL, Rychlik W, White MW, Rhoads RE, Morris DR (1990) Simultaneous cytoplasmic redistribution of ribosomal protein L32 mRNA and phosphorylation of eukaryotic initiation factor 4E after mitogenic stimulation of Swiss 3T3 cells. J Biol Chem 265: 3619–3622

    PubMed  CAS  Google Scholar 

  • Kaspar RL, Kakegava T, Cranston H, Morris DR, White MW (1992) A regulatory cis element and a specific binding factor involved in the mitogenic control of murine ribosomal protein L32 translation. J Biol Chem 267: 508–514

    PubMed  CAS  Google Scholar 

  • Kaspar RL, Morris DR, White M (1993) Control of ribosomal protein synthesis in eukaryotic cells. In: Ilan J (ed) Translational regulation of gene expression 2. Plenum Press, New York, pp 335–348

    Google Scholar 

  • Kato S, Sekine S, Oh S-W, Kim N-S, Umezawa Y, Abe N, Yokoyama-Kobayashi M, Aoki T (1994) Construction of a human full-length cDNA bank. Gene 150: 243–250

    Article  PubMed  CAS  Google Scholar 

  • Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant trnasformation by a eukaryotic initiation factor subunit that binds to mRNA 5´ cap. Nature 345: 544–547

    Article  PubMed  CAS  Google Scholar 

  • Levy S, Avni D, Hariharan N, Perry RP, Meyuhas O (1991) Oligopyrimidine tract at the 5´ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc Natl Acad Sci USA 88: 3319–3323

    Article  PubMed  CAS  Google Scholar 

  • Lodish HF (1974) Model for the regulation of mRNA translation applied to haemoglobin synthesis. Nature 251: 385–388

    Article  PubMed  CAS  Google Scholar 

  • Loreni F, Amaldi F (1992) Translational regulation of ribosomal protein synthesis in Xenopus cultured cells: mRNA relocation between polysomes and RNP during nutritional shifts. Eur J Biochem 205: 1027–1032

    Article  PubMed  CAS  Google Scholar 

  • Loreni F, Francesconi A, Jappelli R, Amaldi F (1992) Analysis of mRNAs under translational control during Xenopus embryogenesis: isolation of new ribosomal protein clones. Nucl Acids Res 20: 1859–1863

    Article  PubMed  CAS  Google Scholar 

  • Loreni F, Franscesconi A, Amaldi F (1993) Coordinate translational regulation in the syntheses of elongation factor la and ribosomal proteins in Xenopus laevis . Nucl Acids Res 21: 4721–4725

    Article  PubMed  CAS  Google Scholar 

  • Mager W (1988) Control of ribosomal protein gene expression. Biochim Biophys Acta 949: 1–15

    PubMed  CAS  Google Scholar 

  • Makrides S, Chitpatima ST, Bandyopadhyay R, Brawerman G (1988) Nucleotide sequence of a messenger RNA for a 40-kilodalton polypeptide that is under translational control in mouse tumor cells. Nucl Acids Res 16: 2349

    Article  PubMed  CAS  Google Scholar 

  • Mariottini P, Arnaldi F (1990) The 5´ untranslated region of mRNA for ribosomal protein S19 is involved in its translational regulation during Xenopus development. Mol Cell Biol 10: 816–822

    PubMed  CAS  Google Scholar 

  • Massé T, Garcin D, Jacquemont B, Madjar J-J (1990) Herpes simplex virus type-1-induced stimulation of ribosomal protein S6 phosphorylation is inhibited in neomycin-treated human epidermoid carcinoma 2 cells and in ras -transformed cells. Eur J Biochem 194: 287–291

    Article  PubMed  Google Scholar 

  • Merrick WC (1992) Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev 56: 291–315

    PubMed  CAS  Google Scholar 

  • Meyuhas O (1984) Ribosomal protein gene expression in proliferating and nonproliferating cells. In: Stein GS, Stein JL (ed) Recombinant DNA and cell proliferation. Academic Press, Orlando, pp 243–271

    Google Scholar 

  • Meyuhas O, Perry RP (1980) Construction and identification of cDNA clones for several mouse ribosomal proteins. Application for the study of r-protein gene expression. Gene 10: 113–137

    Article  PubMed  CAS  Google Scholar 

  • Meyuhas O, Thompson AE, Perry RP (1987) Glucocorticoids selectively inhibit the translation of ribosomal protein mRNAs in PI798 lymphosarcoma cells. Mol Cell Biol 7: 2691–2699

    PubMed  CAS  Google Scholar 

  • Meyuhas O, Baldin V, Bouche G, Amalric F (1990) Glucocorticoids repress ribosome biosynthesis in lymphosarcoma cells by affecting gene expression at the level of transcription, post-transcription and translation. Biochim Biophys Acta 1049: 38–44

    PubMed  CAS  Google Scholar 

  • Meyuhas O, Avni D, Shama S (1996) Translational control of ribosomal protein mRNAs in eukaryotes. In: Hershey JWB, Mathews M, Sonenberg N (eds) Translational control. Cold Spring Harbor Lab Press, Cold Spring Harbor, NY pp 363–388

    Google Scholar 

  • Patel RC, Jacobs-Lorena M (1992) cis -Acting sequences in the 5´ untranslated region of the ribosomal protein Al mRNA mediate its translational regulation during early embryogenesis of Drosophila . J Biol Chem 267:1159–1164

    Google Scholar 

  • Perry RP, Meyuhas O (1991) Translational control of ribosomal protein production in mammalian cells. In: Thach RE (ed) Translationally regulated genes in higher eukaryotes. Karger AG, Basel, pp 83–92

    Google Scholar 

  • Pierandrei-Amaldi P, Arnaldi F (1994) Aspects of regulation of ribosomal protein synthesis in Xenopus laevis . Review. Genetica 94: 181–193

    Article  PubMed  CAS  Google Scholar 

  • Pierandrei-Amaldi P, Beccari E (1981) Messenger RNA for ribosomal proteins in Xenopus laevis oocytes. Eur J Biochem 106: 603–611

    Article  Google Scholar 

  • Pierandrei-Amaldi P, Campioni N, Beccari E, Bozzoni I (1982) Expression of ribosomal protein genes in Xenopus laevis development. Cell 30: 163–171

    Article  PubMed  CAS  Google Scholar 

  • Pierandrei-Amaldi P, Beccari E, Bozzoni I, Arnaldi F (1985a) Ribosomal protein production in normal and anucleolate Xenopus embryos: regulation at the posttranscriptional and translational levels. Cell 42: 317–323

    Article  CAS  Google Scholar 

  • Pierandrei-Amaldi P, Campioni N, Gallinari P, Beccari E, Bozzoni I, Arnaldi F (1985b) Ribosomal protein synthesis is not autogenously regulated at the translational level in Xenopus laevis . Dev Biol 167: 281–289

    Article  Google Scholar 

  • Pierandrei-Amaldi P, Arnaldi F, Bozzoni I, Fragapane P (1987) Regulation of ribosomal protein genes during Xenopus development. In: Firtel RA Davidson EH (eds) Molecular approaches to developmental biology. Alan R Liss Ine, New York, pp 267–278

    Google Scholar 

  • Pierandrei-Amaldi P, Campioni N, Cardinali B (1991) Experimental changes in the amount of maternally stored ribosomes affect the translation efficiency of ribosomal protein mRNA in Xenopus embryo. Cell Mol Biol 37: 227–238

    PubMed  CAS  Google Scholar 

  • Rao TR, Slobin LI (1987) Regulation of the utilization of mRNA for eukaryotic elongation factor Tu in Friend erythroleukemia cells. Mol Cell Biol 7: 687–697

    PubMed  CAS  Google Scholar 

  • Rao TR, Castronovo V, Schmitt MC, Wewer UM, Claysmith AP, Liotta LA, Sobel ME (1989) Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor. Biochemistry 28: 7476–7486

    Article  PubMed  CAS  Google Scholar 

  • Schibier U, Kelley DE, Perry RP (1977) Comparision of methylated sequences in messenger RNA and the heterogeneous nuclear RNA from mouse L cells. J Mol Biol 115: 695–714

    Article  Google Scholar 

  • Schmidt T, Chen PS, Pellegrini M (1985) The induction of ribosome biosynthesis in a nonmitotic secretory tissue. J Biol Chem 260: 7645–7650

    PubMed  CAS  Google Scholar 

  • Severson WE, Mascolo PL, White MW (1995) Lymphocyte p56L32 is a RNA/DNA-binding protein which interacts with conserved elements of the murine L32 ribosomal protein mRNA. Eur J Biochem 229: 426–432

    Article  PubMed  CAS  Google Scholar 

  • Shama S, Avni D, Frederickson RM, Sonenberg N, Meyuhas O (1995) Overexpression of initiation factor eIF-4E does not relieve the translational repression of ribosomal protein mRNAs in quiescent cells. Gene Expr 4: 241–252

    PubMed  CAS  Google Scholar 

  • Sonenberg N (1994) mRNA translation: influence of the 5´ and 3´ untranslated regions. Curr Opin Genet Dev 4:310–5

    Google Scholar 

  • Steel LF, Jacobson A (1987) Translational control of ribosomal protein synthesis during early Dictyostelium discoideum development. Mol Cell Biol 7: 965–972

    PubMed  CAS  Google Scholar 

  • Steel LF, Jacobson A (1991) Sequence elements that affect mRNA translational activity in developing Dictyostelium cells. Dev Genet 12: 98–103

    Article  PubMed  CAS  Google Scholar 

  • Terada N, Patel HR, Takase K, Kohno K, Nairn AC, Gelfand EW (1994) Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc Natl Acad Sci USA 91: 11477–11481

    Article  PubMed  CAS  Google Scholar 

  • Thach RE (1991) Translationally regulated genes in higher eukaryotes. Karger AG, Basel

    Google Scholar 

  • Thomas G, Thomas G (1986) Translational control of mRNA expression during the early mitogenic response in Swiss mouse 3T3 cells: identification of specific proteins. J Cell Biol 103: 2137–2144

    Article  PubMed  CAS  Google Scholar 

  • Uetsuki T, Naito A, Nagata S, Kaziro Y (1989) Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor-1 alpha. J Biol Chem 264: 5791–5798

    PubMed  CAS  Google Scholar 

  • Walden WE, Godefrog-Colburn T, Thach RE (1981) The role of mRNA competition in regulating translation. J Biol Chem 256: 11739–11746

    PubMed  CAS  Google Scholar 

  • Warner JR (1977) In the absence of ribosomal RNA synthesis, the ribosomal protein of HeLa cells are synthesized normally and degraded rapidly. J Mol Biol 115: 315–333

    Article  PubMed  CAS  Google Scholar 

  • Weiss YC, Vaslet CA, Rosbash M (1981) Ribosomal protein mRNAs increase dramatically during Xenopus development. Dev Biol 87: 330–339

    Article  PubMed  CAS  Google Scholar 

  • White MW, Degnin C, Hill J, Morris DR (1990) Specific regulation by endogenous polyamines of translation initiation of S-adenosylmethionin decarboxylase mRNA in swiss 3T3 fibroblasts. Biochem J 268: 657–660

    PubMed  CAS  Google Scholar 

  • Wool IG, Endo Y, Chan YL, Glück A (1990) Structure, function and evolution of mammalian ribosomes. In: Hill WE, Dahlberg A, Garrett RA, Moore PB, Schlessinger D, Warner JR (eds) The ribosome: structure function and evolution. Am Soc Microbiol Press, Washington, pp 203–214

    Google Scholar 

  • Woolford JLJ, Warner JR (1991) The ribosome and its synthesis. In: Broach J, Jones E, Pringle J (ed) The molecular and cellular biology of the yeast Saccharomyces : genome dynamics, protein synthesis, and energetic. Cold Spring Harbor Lab Press, Cold Spring Harbor NY, pp 587–626

    Google Scholar 

  • Wormington WM (1988) Expression of ribosomal protein genes during Xenopus development. In: Browder LW (ed) Developmental biology, vol 5. Plenum Press, New York, pp 227–240

    Google Scholar 

  • Yenofsky R, Bergman I, Brawerman G (1982) Messenger RNA species partially in a repressed state in mouse sarcoma ascites cells. Proc Natl Acad Sci USA 79: 5876–5880

    Article  PubMed  CAS  Google Scholar 

  • Yenofsky RS, Careghini A, Krowczynska A, Brawerman G (1983) Regulation of mRNA utilization in mouse erythroleukemia cells induced to differentiate by exposure to dimethyl sulfoxide. Mol Cell Biol 3: 1197–1203

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amaldi, F., Pierandrei-Amaldi, P. (1997). TOP Genes: A Translationally Controlled Class of Genes Including Those Coding for Ribosomal Proteins. In: Jeanteur, P. (eds) Cytoplasmic fate of messenger RNA. Progress in Molecular and Subcellular Biology, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60471-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60471-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64420-7

  • Online ISBN: 978-3-642-60471-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics