Skip to main content

Advertisement

Log in

Downregulation of miR-25 modulates non-small cell lung cancer cells by targeting CDC42

  • Research Article
  • Published:
Tumor Biology

Abstract

The current study aims to investigate the fuctional role of miRNA-25 in non-small cell lung cancer (NSCLC) cells. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-25 in NSCLC cell lines and 11 pairs of human NSCLC and non-cancerous tissues. The inhibitor of miR-25 was stably transfected into NSCLC cell line A549 cells. Then the effects of downregulating miR-25 on cancer cell proliferation, cell cycle arrest, chemosensitivity to cisplatin, and growth of in vivo xenograft were investigated. Direct regulation of miR-25 on its target gene, cell division cycle 42 (CDC42), was examined by luciferase reporter assay, qRT-PCR and western blot. CDC42 was then upregulated in A549 cells to investigate its effect on miR-25-mediated NSCLC cell proliferation and cell cycle arrest. The expression of miR-25 in NSCLC cells or human tissues was significantly higher than that in normal lung cells or adjacent non-cancerous tissues, respectively. Downregulation of miR-25 markedly inhibited A549 cell proliferation, induced G1 cell cycle arrest, increased cisplatin sensitivity, and suppressed the growth of caner cell xenograft in vivo. CDC42 was confirmed to be the directly regulated by miR-25 in A549 cells. Upregulation of CDC42 in A549 cells rescued the inhibitory effect on proliferation and the G1 cell cycle arrest induced by miR-25 downregulation. Our study demonstrates miR-25, by targeting CDC42, is an important regulator in NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA: A Cancer J Clin. 2012;62:10–29.

    Google Scholar 

  2. Rivera MP. Multimodality therapy in the treatment of lung cancer. Semin Respir Crit Care Med. 2004;25 Suppl 1:3–10.

    Article  PubMed  Google Scholar 

  3. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    Article  CAS  PubMed  Google Scholar 

  4. Pillai RS. MicroRNA function: multiple mechanisms for a tiny RNA? RNA. 2005;11:1753–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39:673–7.

    Article  CAS  PubMed  Google Scholar 

  6. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435:828–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006;94:776–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009;60:167–79.

    Article  CAS  PubMed  Google Scholar 

  9. Lynam-Lennon N, Maher SG, Reynolds JV. The roles of microRNA in cancer and apoptosis. Biol Rev Camb Philos Soc. 2009;84:55–71.

    Article  PubMed  Google Scholar 

  10. Wang Y, Lee CG. MicroRNA and cancer—focus on apoptosis. J Cell Mol Med. 2009;13:12–23.

    Article  PubMed  Google Scholar 

  11. Ma J, Dong C, Ji C. MicroRNA and drug resistance. Cancer Gene Ther. 2010;17:523–31.

    Article  CAS  PubMed  Google Scholar 

  12. Nordentoft I, Birkenkamp-Demtroder K, Agerbaek M, Theodorescu D, Ostenfeld MS, Hartmann A, et al. MiRNAs associated with chemo-sensitivity in cell lines and in advanced bladder cancer. BMC Med Genet. 2012;5:40.

    CAS  Google Scholar 

  13. Singh S, Chitkara D, Kumar V, Behrman SW, Mahato RI. MiRNA profiling in pancreatic cancer and restoration of chemosensitivity. Cancer Lett. 2013;334:211–20.

    Article  CAS  PubMed  Google Scholar 

  14. Kim CH, Kim HK, Rettig RL, Kim J, Lee ET, Aprelikova O, et al. MiRNA signature associated with outcome of gastric cancer patients following chemotherapy. BMC Med Genet. 2011;4:79.

    CAS  Google Scholar 

  15. Zhang H, Zuo Z, Lu X, Wang L, Wang H, Zhu Z. MiR-25 regulates apoptosis by targeting Bim in human ovarian cancer. Oncol Rep. 2012;27:594–8.

    CAS  PubMed  Google Scholar 

  16. Smith AL, Iwanaga R, Drasin DJ, Micalizzi DS, Vartuli RL, Tan AC, et al. The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene. 2012;31:5162–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Tan W, Neo TW, Aung MO, Wasser S, Lim SG, et al. Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Sci. 2009;100:1234–42.

    Article  CAS  PubMed  Google Scholar 

  18. Tan W, Li Y, Lim SG, Tan TM. MiR-106b-25/miR-17-92 clusters: polycistrons with oncogenic roles in hepatocellular carcinoma. World J Gastroenterol: WJG. 2014;20:5962–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.

    Article  CAS  PubMed  Google Scholar 

  20. Landi MT, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen AW, et al. MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res: off J Am Assoc Cancer Res. 2010;16:430–41.

    Article  CAS  Google Scholar 

  21. Arias-Romero LE, Chernoff J. Targeting Cdc42 in cancer. Expert Opin Ther Targets. 2013;17:1263–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stengel K, Zheng Y. Cdc42 in oncogenic transformation, invasion, and tumorigenesis. Cell Signal. 2011;23:1415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang JY, Zhang D, Wang EH. Overexpression of small GTPases directly correlates with expression of delta-catenin and their coexpression predicts a poor clinical outcome in nonsmall cell lung cancer. Mol Carcinog. 2013;52:338–47.

    Article  CAS  PubMed  Google Scholar 

  24. Hua KT, Tan CT, Johansson G, Lee JM, Yang PW, Lu HY, et al. N-alpha-acetyltransferase 10 protein suppresses cancer cell metastasis by binding PIX proteins and inhibiting Cdc42/Rac1 activity. Cancer Cell. 2011;19:218–31.

    Article  CAS  PubMed  Google Scholar 

  25. Olson MF, Ashworth A, Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science. 1995;269:1270–2.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingwei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Chen, T., Li, Y. et al. Downregulation of miR-25 modulates non-small cell lung cancer cells by targeting CDC42. Tumor Biol. 36, 1903–1911 (2015). https://doi.org/10.1007/s13277-014-2793-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2793-0

Keywords

Navigation