Skip to main content

Advertisement

Log in

Overexpression of SMARCA5 correlates with cell proliferation and migration in breast cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

SMARCA5 partners with RSF-1 to compose the RSF complex, which belongs to the ISWI family of chromatin remodelers. Recent studies referred that SMARCA5 was overexpressed in some malignant tumors. However, expression pattern and biological roles of SMARCA5 in breast cancer have not been examined. In the present study, we found that SMARCA5 was overexpressed in breast cancer specimens by immunohistochemistry. Significant association was observed between SMARCA5 overexpression and TNM stage (p = 0.0199), tumor size (p = 0.0066), high proliferation index (p = 0.0366), and poor overall survival (p = 0.0141). SMARCA5 overexpression also correlated with Rsf-1 expression levels (p = 0.0120). Furthermore, colony formation assay and Matrigel invasion assay showed that knockdown of SMARCA5 expression in MDA-MB-231 and MDA-MB-435s cell lines with high endogenous expression decreased cell proliferation and cell invasion. Flow cytometry showed knockdown of SMARCA5-arrested cell cycle. Further analysis of cell cycle and invasion-related molecules showed that SMARCA5 downregulated cyclin A, MMP2 expression and upregulated p21 expression. In conclusion, our study demonstrated that SMARCA5 was overexpressed in human breast cancers and correlated with poor prognosis. SMARCA5 contributes to breast cancer cell proliferation and invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chavarri-Guerra Y et al. Breast cancer in Mexico: a growing challenge to health and the health system. Lancet Oncol. 2012;13(8):e335–43.

    Article  PubMed  Google Scholar 

  2. Jemal A et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  3. Siegel R et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62(4):220–41.

    Article  PubMed  Google Scholar 

  4. Ambrogi F et al. Molecular subtyping of breast cancer from traditional tumor marker profiles using parallel clustering methods. Clin Cancer Res. 2006;12(3 Pt 1):781–90.

    Article  CAS  PubMed  Google Scholar 

  5. Charpentier M, Martin S. Interplay of stem cell characteristics, EMT, and microtentacles in circulating breast tumor cells. Cancers (Basel). 2013;5(4):1545–65.

    Article  Google Scholar 

  6. Cuppone F et al. Magnitude of risks and benefits of the addition of bevacizumab to chemotherapy for advanced breast cancer patients: meta-regression analysis of randomized trials. J Exp Clin Cancer Res. 2011;30:54.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ahn S et al. The prognostic significance of tumor-associated stroma in invasive breast carcinoma. Tumour Biol. 2012;33(5):1573–80.

    Article  PubMed  Google Scholar 

  8. Kabbage M et al. Expression of the molecular chaperone alpha B-crystallin in infiltrating ductal breast carcinomas and the significance thereof: an immunohistochemical and proteomics-based strategy. Tumour Biol. 2012;33(6):2279–88.

    Article  CAS  PubMed  Google Scholar 

  9. Elfagieh M et al. Serum tumour markers as a diagnostic and prognostic tool in Libyan breast cancer. Tumour Biol. 2012;33(6):2371–7.

    Article  CAS  PubMed  Google Scholar 

  10. Kurbel S. In search of triple-negative DCIS: tumor-type dependent model of breast cancer progression from DCIS to the invasive cancer. Tumour Biol. 2013;34(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  11. Kokavec J et al. Chromatin remodeling and SWI/SNF2 factors in human disease. Front Biosci. 2008;13:6126–34.

    Article  CAS  PubMed  Google Scholar 

  12. LeRoy G et al. Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science. 1998;282(5395):1900–4.

    Article  CAS  PubMed  Google Scholar 

  13. Poot RA et al. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. EMBO J. 2000;19(13):3377–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Strohner R et al. NoRC–a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J. 2001;20(17):4892–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aihara T et al. Cloning and mapping of SMARCA5 encoding hSNF2H, a novel human homologue of Drosophila ISWI. Cytogenet Cell Genet. 1998;81(3–4):191–3.

    Article  CAS  PubMed  Google Scholar 

  16. Buetow KH et al. Loss of heterozygosity suggests tumor suppressor gene responsible for primary hepatocellular carcinoma. Proc Natl Acad Sci U S A. 1989;86(22):8852–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lazzaro MA, Picketts DJ. Cloning and characterization of the murine Imitation Switch (ISWI) genes: differential expression patterns suggest distinct developmental roles for Snf2h and Snf2l. J Neurochem. 2001;77(4):1145–56.

    Article  CAS  PubMed  Google Scholar 

  18. Chong S et al. Modifiers of epigenetic reprogramming show paternal effects in the mouse. Nat Genet. 2007;39(5):614–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stopka T, Skoultchi AI. The ISWI ATPase Snf2h is required for early mouse development. Proc Natl Acad Sci U S A. 2003;100(24):14097–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gigek CO et al. SMARCA5 methylation and expression in gastric cancer. Cancer Invest. 2011;29(2):162–6.

    Article  CAS  PubMed  Google Scholar 

  21. Stopka T et al. Chromatin remodeling gene SMARCA5 is dysregulated in primitive hematopoietic cells of acute leukemia. Leukemia. 2000;14(7):1247–52.

    Article  CAS  PubMed  Google Scholar 

  22. Reis ST et al. The role of micro RNAs let7c, 100 and 218 expression and their target RAS, C-MYC, BUB1, RB, SMARCA5, LAMB3 and Ki-67 in prostate cancer. Clinics (Sao Paulo). 2013;68(5):652–7.

    Article  Google Scholar 

  23. Sheu JJ et al. The roles of human sucrose nonfermenting protein 2 homologue in the tumor-promoting functions of Rsf-1. Cancer Res. 2008;68(11):4050–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sheu JJ et al. Rsf-1, a chromatin remodeling protein, induces DNA damage and promotes genomic instability. J Biol Chem. 2010;285(49):38260–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Loyola A et al. Functional analysis of the subunits of the chromatin assembly factor RSF. Mol Cell Biol. 2003;23(19):6759–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gerdes J et al. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133(4):1710–5.

    CAS  PubMed  Google Scholar 

  27. Brown DC, Gatter KC. Monoclonal antibody Ki-67: its use in histopathology. Histopathology. 1990;17(6):489–503.

    Article  CAS  PubMed  Google Scholar 

  28. Cher ML et al. Cellular proliferation in prostatic adenocarcinoma as assessed by bromodeoxyuridine uptake and Ki-67 and PCNA expression. Prostate. 1995;26(2):87–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Q., Mao, X., Li, B. et al. Overexpression of SMARCA5 correlates with cell proliferation and migration in breast cancer. Tumor Biol. 36, 1895–1902 (2015). https://doi.org/10.1007/s13277-014-2791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2791-2

Keywords

Navigation