Skip to main content

Advertisement

Log in

Expression of microRNA-96 and its potential functions by targeting FOXO3 in non-small cell lung cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

MicroRNAs are implicated in the regulation of various cellular processes, including proliferation, differentiation, cell death, and cell mobility, and can function either as oncogenes or tumor suppressors in tumor progression. The effects of the expression of miR-96 in non-small cell lung cancer (NSCLC) remain unclear. In our study, qRT-PCR (quantitative reverse transcription PCR) was performed to identify the miR-96 expression level in 68 paired NSCLC and adjacent normal lung tissues. Trans-well, cell counting kit-8, and apoptosis assays were used to evaluate the effects of miR-96 expression on cell invasion, proliferation, and apoptosis. Dual-luciferase reporter assay and Western blotting were used to verify whether FOXO3 was a potential major target gene of miR-96. Finally, the effect of FOXO3 on miR-96-induced cell survival was determined by transfection of the genes expressing FOXO3 lacking 3′UTR and miR-96. The expression level of miR-96 in NSCLC tissues was higher than that in adjacent normal lung tissues, and this increased expression was significantly associated with lymph node metastasis. In contrast to the cells in the blank and negative control groups, the number of cells migrating through the matrigel was significantly lower and the incidence of apoptosis was significantly higher in cells transfected with a miR-96 inhibitor. Western blotting and dual-luciferase reporter assays demonstrated that miR-96 can bind to the putative seed region in FOXO3 mRNA 3′UTR, and can significantly lower the expression of FOXO3. The introduction of FOXO3 cDNA without 3′UTR restored miR-96 induced cell apoptosis and invasion. MiR-96 is up-regulated in NSCLC tissues. Downregulation of miR-96 inhibits invasion and promotes apoptosis in NSCLC cells A549 and SPC-A-1 by targeting FOXO3. Therefore, our study improves our understanding of the mechanisms underlying NSCLC pathogenesis and may promote the development of novel targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Center MM, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 2010;19(8):1893–907.

    Article  PubMed  Google Scholar 

  2. Ramalingam SS, Owonikoko TK, Khuri FR. Lung cancer: new biological insights and recent therapeutic advances. CA Cancer J Clin. 2011;61(2):91–112.

    Article  PubMed  Google Scholar 

  3. Favaretto AG, Pasello G, Magro C. Second and third line treatment in advanced non-small cell lung cancer. Discov Med. 2009;8(43):204–9.

    PubMed  Google Scholar 

  4. Marcus PM, Bergstralh EJ, Fagerstrom RM, et al. Lung cancer mortality in the Mayo Lung Project: impact of extended follow-up. J Natl Cancer Inst. 2000;92(16):1308–16.

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  6. Kasinski AL, Slack FJ. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11:849–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen CZ. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med. 2005;353:1768–71.

    Article  CAS  PubMed  Google Scholar 

  8. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garzon R, Marcucci G. Potential of microRNAs for cancer diagnostics, prognostication and therapy. Curr Opin Oncol. 2012;24:655–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hoshino I, Matsubara H. MicroRNAs in cancer diagnosis and therapy: from bench to bedside. Surg Today. 2013;43:467–78.

    Article  CAS  PubMed  Google Scholar 

  11. Cho WC. MicroRNAs as therapeutic targets and their potential applications in cancer therapy. Expert Opin Ther Targets. 2012;16:747–59.

    Article  CAS  PubMed  Google Scholar 

  12. Jones CI, Zabolotskaya MV, Newbury SF, et al. Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma. Br J Cancer. 2012;107:1987–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang X, Zeng J, Chen C, et al. The tumor suppressive role of miRNA-370 by targeting FOXM1 in acute myeloid leukemia. Mol Cancer. 2012;11:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma L, Huang Y, Zhu W, Jun Y, et al. An integrated analysis of miRNA and mRNA expressions in non-small cell lung cancers. PLoS One. 2011;6(10):e26502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin H, Dai T, Chen X, et al. Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS One. 2011;5:e15797.

    Article  Google Scholar 

  16. Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 2009;284:23204–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005;24:7410–25.

    Article  CAS  PubMed  Google Scholar 

  18. Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007;120:2479–87.

    Article  CAS  PubMed  Google Scholar 

  19. Hu MC, Lee DF, Ou-Yang F, et al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell. 2004;117:225–37.

    Article  CAS  PubMed  Google Scholar 

  20. Gregory RI, Shiekhattar R. MicroRNA biogenesis and cancer. Cancer Res. 2005;65:3509–12.

    Article  CAS  PubMed  Google Scholar 

  21. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;857–66.

  22. Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  23. Bandrés E, Cubedo E, Zárate R, et al. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 2006;29:1–10.

    Google Scholar 

  24. Pineau P, Volinia S, Battiston C, et al. MiR-221 over-expression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A. 2010;107:264–9.

    Article  CAS  PubMed  Google Scholar 

  25. Han Y, Chen J, Wang Y, et al. MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS One. 2011;6:e18286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schaefer A, Jung M, Stephan C, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 2010;126:1166–76.

    CAS  PubMed  Google Scholar 

  27. Agirre X, Jiménez-Velasco A, Bandrés E, et al. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res. 2008;6:1830–40.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu W, Liu X, Hunag Y, et al. Overexpression of members of the microRNA-183 family is a risk factor for lung cancer: a case control study. BMC Cancer. 2011;11:393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ozsolak F, Poling LL, Fisher DE, et al. Chromatin structure analyses identify miRNA promoters. Genes Dev. 2008;22:3172–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Myatt SS, Wang J, Fusi L, et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res. 2010;70:367–77.

    Article  CAS  PubMed  Google Scholar 

  31. Jalvy-Delvaille S, Maurel M, Chabas S, et al. Molecular basis of differential target regulation by miR-96 and miR-182: the Glypican-3 as a model. Nucleic Acids Res. 2012;40:1356–65.

    Article  CAS  PubMed  Google Scholar 

  32. Yang JY, Zong CS, Ding QQ, et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MCM2-mediated degradation. Nat Cell Biol. 2008;10:370.

    Article  Google Scholar 

  33. Paik JH, Kollipara R, DePinho RA, et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell. 2007;128(2):309–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Myatt SS, Lam EW. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 2007;7(11):847–59.

    Article  CAS  PubMed  Google Scholar 

  35. Alvarez B. Forkhead transcription factors contribute to execution of the mitotic programme in mammals. Nature. 2001;413:744–7.

    Article  CAS  PubMed  Google Scholar 

  36. Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science. 2004;306:2105–8.

    Article  CAS  PubMed  Google Scholar 

  37. Tran H. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science. 2002;296:530–4.

    Article  CAS  PubMed  Google Scholar 

  38. Tsai WB. Functional interaction between FOXO3 and ATM regulates DNA damage response. Nat Cell Biol. 2008;10:460–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Furukawa-Hibi Y. FOXO transcription factors in cell-cycle regulation and the response to oxidative stress. Antioxid Redox Signal. 2005;7:752–60.

    Article  CAS  PubMed  Google Scholar 

  40. Willcox BJ. FOXO3a genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A. 2008;105:13987–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brunet A. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–68.

    Article  CAS  PubMed  Google Scholar 

  42. Sunters A. FOXO3 transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem. 2003;278:49795–805.

    Article  CAS  PubMed  Google Scholar 

  43. Yang JY. Induction of FOXO3a and Bim expression in response to ionizing radiation. Int J Oncol. 2006;29:643–8.

    PubMed  PubMed Central  Google Scholar 

  44. Hu MC. IκB kinase promotes tumourigenesis through inhibition of Forkhead FOXO3. Cell. 2004;117:225–37.

    Article  CAS  PubMed  Google Scholar 

  45. Seoane J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell. 2004;117:211–23.

    Article  CAS  PubMed  Google Scholar 

  46. Habashy HO. FOXO3a nuclear localisation is associated with good prognosis in luminal-like breast cancer. Breast Cancer Res Treat. 2011;129:11–21.

    Article  CAS  PubMed  Google Scholar 

  47. Jiang Y. Foxo3a expression is a prognostic marker in breast cancer. PLoS One. 2013;8:e70746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Paik JH. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell. 2007;128:309–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miyamoto K. FOXO3 is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell. 2007;1:101–12.

    Article  CAS  PubMed  Google Scholar 

  50. Fei M. Low expression of Foxo3a is associated with poor prognosis in ovarian cancer patients. Cancer Invest. 2009;27:52–9.

    Article  CAS  PubMed  Google Scholar 

  51. Yang XB, Zhao JJ, Pan K, et al. Decreased expression of the FOXO3a gene is associated with poor prognosis in primary gastric adenocarcinoma patients. PLoS One. 2013;8(10):e78158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shukla S, Shukla M, Gupta S, et al. Deregulation of FOXO3A during prostate cancer progression. Int J Oncol. 2009;34:1613–20.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Wu Jieping Medical Foundation of China.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojun Zhang.

Additional information

Juan Li and Ping Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, P., Chen, T. et al. Expression of microRNA-96 and its potential functions by targeting FOXO3 in non-small cell lung cancer. Tumor Biol. 36, 685–692 (2015). https://doi.org/10.1007/s13277-014-2698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2698-y

Keywords

Navigation