Skip to main content

Advertisement

Log in

Detection of human papillomavirus (HPV) DNA prevalence and p53 codon 72 (Arg72Pro) polymorphism in prostate cancer in a Greek group of patients

  • Research Article
  • Published:
Tumor Biology

Abstract

Prostate cancer is the most common neoplasm found in males and the second most frequent cause of cancer-related mortality in males in Greece. Among other pathogens, the detection frequency of human papillomavirus (HPV) has been found to be significantly increased in tumor tissues among patients with sexually transmitted diseases (STDs), depending on the geographical distribution of each population studied. The present study focused on the detection of HPV and the distribution of Arg72Pro p53 polymorphism in a cohort of healthy individuals, as well as prostate cancer patients. We investigated the presence of HPV in 50 paraffin-embedded prostate cancer tissues, as well as in 30 physiological tissue samples from healthy individuals by real-time PCR. Furthermore, the same group of patients was also screened for the presence of the Arg72Pro polymorphism of the p53 gene, a p53 polymorphism related to HPV. Out of the 30 control samples, only 1 was found positive for HPV (3.33 %). On the contrary, HPV DNA was detected in 8 out of the total 50 samples (16 %) in the prostate cancer samples. The distribution of the three genotypes, Arg/Arg, Arg/Pro, and Pro/Pro, was 69.6, 21.7, and 8.7 % in the cancer patients and 75.0, 17.86, and 7.14 % in healthy controls, respectively. No statistically significant association was observed between the HPV presence and the age, stage, p53 polymorphism status at codon 72, or PSA. The increased prevalence of HPV detected in the prostate cancer tissues is in agreement with that reported in previous studies, further supporting the association of HPV infection and prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stanford JL, Just JJ, Gibbs M, Wicklund KG, Neal CL, Blumenstein BA, et al. Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. Cancer Res. 1997;57:1194–8.

    CAS  PubMed  Google Scholar 

  2. Ketelsen D, Rothke M, Aschoff P, Merseburger AS, Lichy MP, Reimold M, et al. Detection of bone metastasis of prostate cancer—comparison of whole-body MRI and bone scintigraphy. Röfo. 2008;180:746–52.

    CAS  PubMed  Google Scholar 

  3. CDC. Prostate cancer: the public health perspective, Available at www.cdc.gov/cancer. 2012.

  4. Taylor ML, Mainous 3rd AG, Wells BJ. Prostate cancer and sexually transmitted diseases: a meta-analysis. Fam Med. 2005;37:506–12.

    PubMed  Google Scholar 

  5. Lee CH, Akin-Olugbade O, Kirschenbaum A. Overview of prostate anatomy, histology, and pathology. Endocrinol Metab Clin N Am. 2011;40:565–75. viii-ix.

    CAS  Google Scholar 

  6. Hoffman RM. Clinical practice. Screening for prostate cancer. N Engl J Med. 2011;365:2013–9.

    CAS  PubMed  Google Scholar 

  7. Dennis LK, Dawson DV. Meta-analysis of measures of sexual activity and prostate cancer. Epidemiology. 2002;13:72–9.

    PubMed  Google Scholar 

  8. Canby-Hagino ED, Thompson IM. Mechanisms of disease: prostate cancer—a model for cancer chemoprevention in clinical practice. Nat Clin Pract Oncol. 2005;2:255–61.

    PubMed  Google Scholar 

  9. Ravich A, Ravich RA. Prophylaxis of cancer of the prostate, penis, and cervix by circumcision. NY State J Med. 1951;51:1519–20.

    CAS  Google Scholar 

  10. Miles DD. Cancer of the prostate: The silent man-killer. Del Med J. 1970;42:1–3. passim.

    CAS  PubMed  Google Scholar 

  11. Nomura AM, Kolonel LN. Prostate cancer: a current perspective. Epidemiol Rev. 1991;13:200–27.

    CAS  PubMed  Google Scholar 

  12. Pienta KJ, Esper PS. Risk factors for prostate cancer. Ann Intern Med. 1993;118:793–803.

    CAS  PubMed  Google Scholar 

  13. Wideroff L, Schottenfeld D, Carey TE, Beals T, Fu G, Sakr W, et al. Human papillomavirus DNA in malignant and hyperplastic prostate tissue of black and white males. Prostate. 1996;28:117–23.

    CAS  PubMed  Google Scholar 

  14. Rosenblatt KA, Wicklund KG, Stanford JL. Sexual factors and the risk of prostate cancer. Am J Epidemiol. 2001;153:1152–8.

    CAS  PubMed  Google Scholar 

  15. Sutcliffe S, Viscidi RP, Till C, Goodman PJ, Hoque AM, Hsing AW, et al. Human papillomavirus types 16, 18, and 31 serostatus and prostate cancer risk in the prostate cancer prevention trial. Cancer Epidemiol Biomarkers Prev. 2010;19:614–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Adami HO, Kuper H, Andersson SO, Bergstrom R, Dillner J. Prostate cancer risk and serologic evidence of human papilloma virus infection: a population-based case–control study. Cancer Epidemiol Biomarkers Prev. 2003;12:872–5.

    PubMed  Google Scholar 

  17. Dillner J, Knekt P, Boman J, Lehtinen M, Af Geijersstam V, Sapp M, et al. Sero-epidemiological association between human-papillomavirus infection and risk of prostate cancer. Int J Cancer. 1998;75:564–7.

    CAS  PubMed  Google Scholar 

  18. Hayes RB, Pottern LM, Strickler H, Rabkin C, Pope V, Swanson GM, et al. Sexual behaviour, STDs and risks for prostate cancer. Br J Cancer. 2000;82:718–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Palefsky JM, Holly EA, Ralston ML, Jay N. Prevalence and risk factors for human papillomavirus infection of the anal canal in human immunodeficiency virus (HIV)-positive and HIV-negative homosexual men. J Infect Dis. 1998;177:361–7.

    CAS  PubMed  Google Scholar 

  20. Partridge JM, Hughes JP, Feng Q, Winer RL, Weaver BA, Xi LF, et al. Genital human papillomavirus infection in men: incidence and risk factors in a cohort of university students. J Infect Dis. 2007;196:1128–36.

    PubMed  Google Scholar 

  21. Smith JS, Gilbert PA, Melendy A, Rana RK, Pimenta JM. Age-specific prevalence of human papillomavirus infection in males: a global review. J Adolesc Health. 2011;48:540–52.

    PubMed  Google Scholar 

  22. Martinez-Fierro ML, Leach RJ, Gomez-Guerra LS, Garza-Guajardo R, Johnson-Pais T, Beuten J, et al. Identification of viral infections in the prostate and evaluation of their association with cancer. BMC Cancer. 2010;10:326.

    PubMed  PubMed Central  Google Scholar 

  23. Leiros GJ, Galliano SR, Sember ME, Kahn T, Schwarz E, Eiguchi K. Detection of human papillomavirus DNA and p53 codon 72 polymorphism in prostate carcinomas of patients from Argentina. BMC Urol. 2005;5:15.

    PubMed  PubMed Central  Google Scholar 

  24. Bergh J, Marklund I, Gustavsson C, Wiklund F, Gronberg H, Allard A, et al. No link between viral findings in the prostate and subsequent cancer development. Br J Cancer. 2007;96:137–9.

    CAS  PubMed  Google Scholar 

  25. Sfanos KS, Sauvageot J, Fedor HL, Dick JD, De Marzo AM, Isaacs WB. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate. 2008;68:306–20.

    CAS  PubMed  Google Scholar 

  26. Begum S, Gillison ML, Ansari-Lari MA, Shah K, Westra WH. Detection of human papillomavirus in cervical lymph nodes: a highly effective strategy for localizing site of tumor origin. Clin Cancer Res. 2003;9:6469–75.

    CAS  PubMed  Google Scholar 

  27. Iftner T, Villa LL. Chapter 12: Human papillomavirus technologies. J Natl Cancer Inst Monogr. 2003;31:80–88.

  28. Gravitt PE, Jamshidi R. Diagnosis and management of oncogenic cervical human papillomavirus infection. Infect Dis Clin N Am. 2005;19:439–58.

    Google Scholar 

  29. Burns TF, El-Deiry WS. The p53 pathway and apoptosis. J Cell Physiol. 1999;181:231–9.

    CAS  PubMed  Google Scholar 

  30. Isobe M, Emanuel BS, Givol D, Oren M, Croce CM. Localization of gene for human p53 tumour antigen to band 17p13. Nature. 1986;320:84–5.

    CAS  PubMed  Google Scholar 

  31. Matlashewski G, Lamb P, Pim D, Peacock J, Crawford L, Benchimol S. Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. EMBO J. 1984;3:3257–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Caron de Fromentel C, Soussi T. Tp53 tumor suppressor gene: a model for investigating human mutagenesis. Gene Chromosome Cancer. 1992;4:1–15.

    CAS  Google Scholar 

  33. Hollstein M, Sidransky D, Vogelstein B, Harris CC. P53 mutations in human cancers. Science. 1991;253:49–53.

    CAS  PubMed  Google Scholar 

  34. Soussi T, Legros Y, Lubin R, Ory K, Schlichtholz B. Multifactorial analysis of p53 alteration in human cancer: a review. Int J Cancer. 1994;57:1–9.

    CAS  PubMed  Google Scholar 

  35. Storey A, Thomas M, Kalita A, Harwood C, Gardiol D, Mantovani F, et al. Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature. 1998;393:229–34.

    CAS  PubMed  Google Scholar 

  36. Soulitzis N, Sourvinos G, Dokianakis DN, Spandidos DA. P53 codon 72 polymorphism and its association with bladder cancer. Cancer Lett. 2002;179:175–83.

    CAS  Google Scholar 

  37. Huang SP, Wu WJ, Chang WS, Wu MT, Chen YY, Chen YJ, et al. P53 codon 72 and p21 codon 31 polymorphisms in prostate cancer. Cancer Epidemiol Biomarkers Prev. 2004;13:2217–24.

    CAS  PubMed  Google Scholar 

  38. Henner WD, Evans AJ, Hough KM, Harris EL, Lowe BA, Beer TM. Association of codon 72 polymorphism of p53 with lower prostate cancer risk. Prostate. 2001;49:263–6.

    CAS  PubMed  Google Scholar 

  39. Wu WJ, Kakehi Y, Habuchi T, Kinoshita H, Ogawa O, Terachi T, et al. Allelic frequency of p53 gene codon 72 polymorphism in urologic cancers. Jpn J Cancer Res. 1995;86:730–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. de Roda Husman AM, Walboomers JM, van den Brule AJ, Meijer CJ, Snijders PJ. The use of general primers gp5 and gp6 elongated at their 3' ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol. 1995;76(Pt 4):1057–62.

    PubMed  Google Scholar 

  41. de Araujo MR, De Marco L, Santos CF, Rubira-Bullen IR, Ronco G, Pennini I, et al. Gp5+/6+ SYBR green methodology for simultaneous screening and quantification of human papillomavirus. J Clin Virol. 2009;45:90–5.

    PubMed  Google Scholar 

  42. Cubie HA, Seagar AL, McGoogan E, Whitehead J, Brass A, Arends MJ, et al. Rapid real time PCR to distinguish between high risk human papillomavirus types 16 and 18. Mol Pathol. 2001;54:24–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. van den Brule AJ, Pol R, Fransen-Daalmeijer N, Schouls LM, Meijer CJ, Snijders PJ. Gp5+/6+ PCR followed by reverse line blot analysis enables rapid and high-throughput identification of human papillomavirus genotypes. J Clin Microbiol. 2002;40:779–87.

    PubMed  PubMed Central  Google Scholar 

  44. Schmitt M, Dondog B, Waterboer T, Pawlita M. Homogeneous amplification of genital human alpha papillomaviruses by PCR using novel broad-spectrum gp5+ and gp6+ primers. J Clin Microbiol. 2008;46:1050–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Roberts CC, Swoyer R, Bryan JT, Taddeo FJ. Comparison of real-time multiplex human papillomavirus (HPV) PCR assays with the linear array HPV genotyping pcr assay and influence of DNA extraction method on HPV detection. J Clin Microbiol. 2011;49:1899–906.

    PubMed  PubMed Central  Google Scholar 

  46. ACS. Estimated 2013 cancer deaths by site, sex, & age group. Am Cancer Soc, Surveill Res. 2013

  47. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118:3030–44.

    CAS  PubMed  Google Scholar 

  48. ACS. What are the key statistics about prostate cancer? Am Cancer Soc. 2013.

  49. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The e6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63:1129–36.

    CAS  PubMed  Google Scholar 

  50. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 e6 and e6-ap complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993;75:495–505.

    CAS  PubMed  Google Scholar 

  51. Klug SJ, Ressing M, Koenig J, Abba MC, Agorastos T, Brenna SM, et al. Tp53 codon 72 polymorphism and cervical cancer: a pooled analysis of individual data from 49 studies. Lancet Oncol. 2009;10:772–84.

    CAS  PubMed  Google Scholar 

  52. Sonoyama T, Sakai A, Mita Y, Yasuda Y, Kawamoto H, Yagi T, et al. Tp53 codon 72 polymorphism is associated with pancreatic cancer risk in males, smokers and drinkers. Mol Med Rep. 2011;4:489–95.

    CAS  PubMed  Google Scholar 

  53. Alawadi S, Ghabreau L, Alsaleh M, Abdulaziz Z, Rafeek M, Akil N, et al. P53 gene polymorphisms and breast cancer risk in Arab women. Med Oncol. 2011;28:709–15.

    PubMed  Google Scholar 

  54. Wang JJ, Zheng Y, Sun L, Wang L, Yu PB, Dong JH, et al. Tp53 codon 72 polymorphism and colorectal cancer susceptibility: a meta-analysis. Mol Biol Rep. 2011;38:4847–53.

    CAS  PubMed  Google Scholar 

  55. Jiang DK, Yao L, Ren WH, Wang WZ, Peng B, Yu L. Tp53 arg72pro polymorphism and endometrial cancer risk: a meta-analysis. Med Oncol. 2011;28:1129–35.

    CAS  PubMed  Google Scholar 

  56. Huang CY, Su CT, Chu JS, Huang SP, Pu YS, Yang HY, et al. The polymorphisms of p53 codon 72 and mdm2 snp309 and renal cell carcinoma risk in a low arsenic exposure area. Toxicol Appl Pharmacol. 2011;257:349–55.

    CAS  PubMed  Google Scholar 

  57. Yu H, Huang YJ, Liu Z, Wang LE, Li G, Sturgis EM, et al. Effects of mdm2 promoter polymorphisms and p53 codon 72 polymorphism on risk and age at onset of squamous cell carcinoma of the head and neck. Mol Carcinog. 2011;50:697–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Piao JM, Kim HN, Song HR, Kweon SS, Choi JS, Yun WJ, et al. P53 codon 72 polymorphism and the risk of lung cancer in a Korean population. Lung Cancer. 2011;73:264–7.

    PubMed  Google Scholar 

  59. Dokianakis DN, Papaefthimiou M, Tsiveleka A, Spandidos DA. High prevalence of HPV18 in correlation with ras gene mutations and clinicopathological parameters in cervical cancer studied from stained cytological smears. Oncol Rep. 1999;6:1327–31.

    CAS  PubMed  Google Scholar 

  60. Brooks LA, Tidy JA, Gusterson B, Hiller L, O'Nions J, Gasco M, et al. Preferential retention of codon 72 arginine p53 in squamous cell carcinomas of the vulva occurs in cancers positive and negative for human papillomavirus. Cancer Res. 2000;60:6875–7.

    CAS  PubMed  Google Scholar 

  61. Rosenthal AN, Ryan A, Al-Jehani RM, Storey A, Harwood CA, Jacobs IJ. P53 codon 72 polymorphism and risk of cervical cancer in UK. Lancet. 1998;352:871–2.

    CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Sourvinos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michopoulou, V., Derdas, S.P., Symvoulakis, E. et al. Detection of human papillomavirus (HPV) DNA prevalence and p53 codon 72 (Arg72Pro) polymorphism in prostate cancer in a Greek group of patients. Tumor Biol. 35, 12765–12773 (2014). https://doi.org/10.1007/s13277-014-2604-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2604-7

Keywords

Navigation