Skip to main content

Advertisement

Log in

A functional variant at miR-34a binding site in toll-like receptor 4 gene alters susceptibility to hepatocellular carcinoma in a Chinese Han population

  • Research Article
  • Published:
Tumor Biology

Abstract

Toll-like receptor 4 (TLR4) plays a key role in prompting the innate or immediate response. A growing body of evidence suggests that genetic variants of TLR4 gene were associated with the development of cancers. This study aimed to investigate the relationship of a functional variant (rs1057317) at microRNA-34a (miR-34a) binding site in toll-like receptor 4 gene and the risk of hepatocellular carcinoma. A single center-based case–control study was conducted. In this study, the polymerase chain reaction (PCR) and direct sequencing were used to genotype sequence variants of TLR4 in 426 hepatocellular carcinoma cases and 438 controls. The modification of rs1057317 on the binding of hsa-miR-34a to TLR4 messenger RNA (mRNA) was measured by luciferase activity assay. Individuals carrying the AA genotypes for the rs1057317 were associated significantly with increased risk of hepatocellular carcinoma comparing with those carrying wild-type homozygous CC genotypes (adjusted odds ratio [OR] by sex and age, from 1.116 to 2.452, P = 0.013). The activity of the reporter vector was lower in the reporter vector carrying C allele than the reporter vector carrying A allele. Furthermore, the expression of TLR4 was detected in the peripheral blood mononucleated cell of hepatocellular carcinoma (HCC) patients, suggesting that mRNA and protein levels of TLR4 might be associated with SNP rs1057317. Collectively, these results suggested that the risk of hepatocellular carcinoma was associated with a functional variant at miR-34a binding site in toll-like receptor 4 gene. miR-34a/TLR4 axis may play an important role in the development of hepatocellular carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wang Z, Cao Y, Jiang C, Yang G, Wu J, Ding Y. Lack of association of two common polymorphisms rs2910164 and rs11614913 with susceptibility to hepatocellular carcinoma: a meta-analysis. PLoS One. 2012;7:e40039.

    Article  CAS  Google Scholar 

  2. Thomas MB, Jaffe D, Choti MM, Belghiti J, Curley S, Fong Y, et al. Hepatocellular carcinoma: consensus recommendations of the national cancer institute clinical trials planning meeting. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:3994–4005.

    Article  Google Scholar 

  3. Gao J. Association of MDR1 gene polymorphisms with the risk of hepatocellular carcinoma in the Chinese Han population. Braz J Med Biol Res = Rev Bras Pesquisas Med Biologicas Soc Bras Biofisica. 2013;46:311–7.

    Google Scholar 

  4. Bi J, Zhong C, Li K, Chu H, Wang B. Association study of single nucleotide polymorphisms in XRCC1 gene with risk of hepatocellular carcinoma in Chinese Han population. BioMed Res Int. 2013;2013:138785.

    PubMed  PubMed Central  Google Scholar 

  5. Schutte K, Bornschein J, Malfertheiner P. Hepatocellular carcinoma–epidemiological trends and risk factors. Dig Dis. 2009;27:80–92.

    PubMed  Google Scholar 

  6. Sanyal AJ, Yoon SK, Lencioni R. The etiology of hepatocellular carcinoma and consequences for treatment. Oncologist. 2010;15 Suppl 4:14–22.

    Article  Google Scholar 

  7. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6:674–87.

    Article  CAS  Google Scholar 

  8. Suriawinata A, Xu R. An update on the molecular genetics of hepatocellular carcinoma. Semin Liver Dis. 2004;24:77–88.

    Article  CAS  Google Scholar 

  9. Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol WJG. 2008;14:4300–8.

    Article  Google Scholar 

  10. Zhao C, Yan F, Wu H, Qiao F, Qiu X, Fan H. DNMT3A -448A>G polymorphism and the risk for hepatocellular carcinoma. Biomed Rep. 2013;1:664–8.

    Article  CAS  Google Scholar 

  11. Hu Z, Zhou Z, Xiong G, Wang Y, Lai Y, Deng L, et al. Cyclin D1 G870A polymorphism and the risk of hepatocellular carcinoma in a Chinese population. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2014;35(6):5607–12.

    Article  CAS  Google Scholar 

  12. Zhang L, Qin H, Guan X, Zhang K, Liu Z. The TLR9 gene polymorphisms and the risk of cancer: evidence from a meta-analysis. PLoS One. 2013;8:e71785.

    Article  CAS  Google Scholar 

  13. Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010;327:291–5.

    Article  CAS  Google Scholar 

  14. Wang RF, Miyahara Y, Wang HY. Toll-like receptors and immune regulation: implications for cancer therapy. Oncogene. 2008;27:181–9.

    Article  Google Scholar 

  15. Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature. 2000;406:782–7.

    Article  CAS  Google Scholar 

  16. Kutikhin AG. Association of polymorphisms in TLR genes and in genes of the toll-like receptor signaling pathway with cancer risk. Hum Immunol. 2011;72:1095–116.

    Article  CAS  Google Scholar 

  17. Xu Y, Ma H, Yu H, Liu Z, Wang LE, Tan D, et al. The miR-184 binding-site rs8126 T>C polymorphism in TNFAIP2 is associated with risk of gastric cancer. PLoS One. 2013;8:e64973.

    Article  CAS  Google Scholar 

  18. Minmin S, Xiaoqian X, Hao C, Baiyong S, Xiaxing D, Junjie X, et al. Single nucleotide polymorphisms of toll-like receptor 4 decrease the risk of development of hepatocellular carcinoma. PLoS One. 2011;6:e19466.

    Article  Google Scholar 

  19. Dang Y, Luo D, Rong M, Chen G. Underexpression of miR-34a in hepatocellular carcinoma and its contribution towards enhancement of proliferating inhibitory effects of agents targeting c-MET. PLoS One. 2013;8:e61054.

    Article  CAS  Google Scholar 

  20. Chen T, Huang Z, Wang L, Wang Y, Wu F, Meng S, et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res. 2009;83:131–9.

    Article  CAS  Google Scholar 

  21. Xu J, Yin Z, Gao W, Liu L, Yin Y, Liu P, et al. Genetic variation in a microRNA-502 minding site in SET8 gene confers clinical outcome of non-small cell lung cancer in a Chinese population. PLoS One. 2013;8:e77024.

    Article  CAS  Google Scholar 

  22. Wang K, Li J, Guo H, Xu X, Xiong G, Guan X, et al. MiR-196a binding-site SNP regulates RAP1A expression contributing to esophageal squamous cell carcinoma risk and metastasis. Carcinogenesis. 2012;33:2147–54.

    Article  CAS  Google Scholar 

  23. Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, et al. miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett. 2009;275:44–53.

    Article  CAS  Google Scholar 

  24. Duan W, Xu Y, Dong Y, Cao L, Tong J, Zhou X. Ectopic expression of miR-34a enhances radiosensitivity of non-small cell lung cancer cells, partly by suppressing the LyGDI signaling pathway. J Radiat Res. 2013;54:611–9.

    Article  CAS  Google Scholar 

  25. Ji Q, Hao X, Meng Y, Zhang M, Desano J, Fan D, et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer. 2008;8:266.

    Article  Google Scholar 

  26. Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70:5923–30.

    Article  CAS  Google Scholar 

  27. Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 2009;69:7569–76.

    Article  CAS  Google Scholar 

  28. Weeraratne SD, Amani V, Neiss A, Teider N, Scott DK, Pomeroy SL, et al. miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma. Neuro-Oncology. 2011;13:165–75.

    Article  CAS  Google Scholar 

  29. Pineau P, Volinia S, McJunkin K, Marchio A, Battiston C, Terris B, et al. miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A. 2010;107:264–9.

    Article  CAS  Google Scholar 

  30. Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, et al. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett. 2008;582:1564–8.

    Article  CAS  Google Scholar 

  31. Wei JS, Song YK, Durinck S, Chen QR, Cheuk AT, Tsang P, et al. The MYCN oncogene is a direct target of miR-34a. Oncogene. 2008;27:5204–13.

    Article  CAS  Google Scholar 

  32. Hermeking H. p53 enters the microRNA world. Cancer Cell. 2007;12:414–8.

    Article  CAS  Google Scholar 

  33. El-Omar EM, Ng MT, Hold GL. Polymorphisms in toll-like receptor genes and risk of cancer. Oncogene. 2008;27:244–52.

    Article  CAS  Google Scholar 

  34. Zheng SL, Augustsson-Balter K, Chang B, Hedelin M, Li L, Adami HO, et al. Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the cancer prostate in Sweden study. Cancer Res. 2004;64:2918–22.

    Article  CAS  Google Scholar 

  35. Chen YC, Giovannucci E, Lazarus R, Kraft P, Ketkar S, Hunter DJ. Sequence variants of toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res. 2005;65:11771–8.

    Article  CAS  Google Scholar 

  36. Song J, Kim DY, Kim CS, Kim HJ, Lee DH, Lee HM, et al. The association between toll-like receptor 4 (TLR4) polymorphisms and the risk of prostate cancer in Korean men. Cancer Genet Cytogenet. 2009;190:88–92.

    Article  CAS  Google Scholar 

  37. Hold GL, Rabkin CS, Chow WH, Smith MG, Gammon MD, Risch HA, et al. A functional polymorphism of toll-like receptor 4 gene increases risk of gastric carcinoma and its precursors. Gastroenterology. 2007;132:905–12.

    Article  CAS  Google Scholar 

  38. Hishida A, Matsuo K, Goto Y, Mitsuda Y, Hiraki A, Naito M, et al. Toll-like receptor 4 +3725 G/C polymorphism, Helicobacter pylori seropositivity, and the risk of gastric atrophy and gastric cancer in Japanese. Helicobacter. 2009;14:47–53.

    Article  CAS  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zheng.

Additional information

Zicheng Jiang and Xian-Mei Tang contributed equally to this article and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, ZC., Tang, XM., Zhao, YR. et al. A functional variant at miR-34a binding site in toll-like receptor 4 gene alters susceptibility to hepatocellular carcinoma in a Chinese Han population. Tumor Biol. 35, 12345–12352 (2014). https://doi.org/10.1007/s13277-014-2547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2547-z

Keywords

Navigation