Skip to main content

Advertisement

Log in

Expression of RKIP in chronic myelogenous leukemia K562 cell and inhibits cell proliferation by regulating the ERK/MAPK pathway

  • Research Article
  • Published:
Tumor Biology

Abstract

RAF kinase inhibitor protein (RKIP) is a negative regulator of the RAS-mitogen-activated protein kinase/extracellular signal-regulated kinase signaling cascade. We investigated the expression of RKIP in chronic myelogenous leukemia (CML) K562 cells and the effects of RKIP on the characteristics of K562 cells. The recombinant plasmid pcDNA3.1-RKIP was established and transfected into K562 cells with the help of Lipofectamine 2000. At the same time, the RKIP-siRNA was transfected into K562 cells in another group. The expressions of RKIP in all groups were assayed by Western blot after 48 h. MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to analyze the cell viability. Flow cytometry (FCM) was used to examine the cell cycle and cell apoptosis. Colony forming unit (CFU) assay was used to analyze the effect of RKIP on the clonogenic growth of CML cells. Western blot or luciferase reporter assay was used to detect the effect of RKIP on the level of phospho-ERK1/2 or the transcriptional activity of NF-κB. Western blot analysis showed that the plasmid pcDNA3.1-RKIP or RKIP-siRNA significantly enhanced or decreased RKIP expression (p < 0.01), respectively. In addition, MTT, FCM, and CFU assay indicated that the overexpression of RKIP significantly lowered the cell viability, cell proliferation and the clonogenic growth (p < 0.05), but improved cell apoptosis (p < 0.01). Western blot analysis or luciferase reporter assay showed that the level of phospho-ERK1/2 or the transcriptional activity of NF-κB was strongly inhibited by overexpression of RKIP. All these results could bring us a new perspective for biological therapy in myelogenous leukemia in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rashidi A, Fisher SI. Therapy-related acute promyelocytic leukemia: a systematic review. Med Oncol. 2013;30:625.

    Article  PubMed  Google Scholar 

  2. Shah NN, Dave H, Wayne AS. Immunotherapy for pediatric leukemia. Front Oncol. 2013;3:166.

    PubMed  PubMed Central  Google Scholar 

  3. Napper AD, Watson VG. Targeted drug discovery for pediatric leukemia. Front Oncol. 2013;3:170.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang C, Wang X. The role of tp53 network in the pathogenesis of chronic lymphocytic leukemia. Int J Clin Exp Pathol. 2013;6:1223–9.

    PubMed  PubMed Central  Google Scholar 

  5. Ferrajoli A, Shanafelt TD, Ivan C, Shimizu M, Rabe KG, Nouraee N, et al. Prognostic value of mir-155 in individuals with monoclonal b-cell lymphocytosis and patients with b-chronic lymphocytic leukemia. Blood. 2013;122:1891–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koh CP, Wang CQ, Ng CE, Ito Y, Araki M, Tergaonkar V, et al. Runx1 meets mll: epigenetic regulation of hematopoiesis by two leukemia genes. Leukemia. 2013;27:1793–802.

    Article  CAS  PubMed  Google Scholar 

  7. Cianfriglia M. Targeting mdr1-p-glycoprotein (mdr1-pgp) in immunochemotherapy of acute myeloid leukemia (aml). Ann Ist Super Sanita. 2013;49:190–208.

    CAS  PubMed  Google Scholar 

  8. Goldberg SL, Chen L, Guerin A, Macalalad AR, Liu N, Kaminsky M, et al. Association between molecular monitoring and long-term outcomes in chronic myelogenous leukemia patients treated with first line imatinib. Curr Med Res Opin. 2013;29:1075–82.

    Article  CAS  PubMed  Google Scholar 

  9. Chen P, Price C, Li Z, Li Y, Cao D, Wiley A, et al. Mir-9 is an essential oncogenic microrna specifically overexpressed in mixed lineage leukemia-rearranged leukemia. Proc Natl Acad Sci U S A. 2013;110:11511–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smits EL, Anguille S, Berneman ZN. Interferon alpha may be back on track to treat acute myeloid leukemia. Oncoimmunology. 2013;2:e23619.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lipshultz SE, Lipsitz SR, Kutok JL, Miller TL, Colan SD, Neuberg DS, et al. Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer. 2013;119:3555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin X, Yan J, Tang D. Erk kinases modulate the activation of pi3 kinase related kinases (pikks) in DNA damage response. Histol Histopathol. 2013;28:1547–54.

    CAS  PubMed  Google Scholar 

  13. Chang-Yew Leow C, Gerondakis S, Spencer A. Mek inhibitors as a chemotherapeutic intervention in multiple myeloma. Blood Cancer J. 2013;3:e105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Niba ET, Nagaya H, Kanno T, Tsuchiya A, Gotoh A, Tabata C, et al. Crosstalk between pi3 kinase/pdk1/akt/rac1 and ras/raf/mek/erk pathways downstream pdgf receptor. Cell Physiol Biochem. 2013;31:905–13.

    Article  CAS  PubMed  Google Scholar 

  15. Escara-Wilke J, Yeung K, Keller ET. Raf kinase inhibitor protein (rkip) in cancer. Cancer Metastasis Rev. 2012;31:615–20.

    Article  CAS  PubMed  Google Scholar 

  16. Deiss K, Kisker C, Lohse MJ, Lorenz K. Raf kinase inhibitor protein (rkip) dimer formation controls its target switch from raf1 to g protein-coupled receptor kinase (grk) 2. J Biol Chem. 2012;287:23407–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tavel L, Jaquillard L, Karsisiotis AI, Saab F, Jouvensal L, Brans A, et al. Ligand binding study of human pebp1/rkip: Interaction with nucleotides and raf-1 peptides evidenced by nmr and mass spectrometry. PLoS One. 2012;7:e36187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fu X, Koller S, Abd Alla J, Quitterer U. Inhibition of g-protein-coupled receptor kinase 2 (grk2) triggers the growth-promoting mitogen-activated protein kinase (mapk) pathway. J Biol Chem. 2013;288:7738–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Al-Mulla F, Bitar MS, Taqi Z, Yeung KC. Rkip: much more than raf kinase inhibitory protein. J Cell Physiol. 2013;228:1688–702.

    Article  CAS  PubMed  Google Scholar 

  20. Baritaki S, Huerta-Yepez S, Sahakyan A, Karagiannides I, Bakirtzi K, Jazirehi A, et al. Mechanisms of nitric oxide-mediated inhibition of emt in cancer: inhibition of the metastasis-inducer snail and induction of the metastasis-suppressor rkip. Cell Cycle. 2010;9:4931–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jia B, Liu H, Kong Q, Li B. Rkip expression associated with gastric cancer cell invasion and metastasis. Tumour Biol. 2012;33:919–25.

    Article  CAS  PubMed  Google Scholar 

  22. Zeng L, Imamoto A, Rosner MR. Raf kinase inhibitory protein (rkip): a physiological regulator and future therapeutic target. Expert Opin Ther Targets. 2008;12:1275–87.

    Article  CAS  PubMed  Google Scholar 

  23. Wu K, Bonavida B. The activated nf-kappab-snail-rkip circuitry in cancer regulates both the metastatic cascade and resistance to apoptosis by cytotoxic drugs. Crit Rev Immunol. 2009;29:241–54.

    Article  CAS  PubMed  Google Scholar 

  24. Kim SO, Ives KL, Wang X, Davey RA, Chao C, Hellmich MR. Raf-1 kinase inhibitory protein (rkip) mediates ethanol-induced sensitization of secretagogue signaling in pancreatic acinar cells. J Biol Chem. 2012;287:33377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao D, Ma J, Shi J, Cheng L, Li F, Jiang X, et al. Raf kinase inhibitor protein inhibits esophageal cancer cell invasion through downregulation of matrix metalloproteinase expression. Oncol Rep. 2013;30:304–12.

    Article  CAS  PubMed  Google Scholar 

  26. Li SW, Wang H, Liu ML, Zhang HB, Xiang YQ, Lv X, et al. Positive effect of high rkip expression on reduced distant metastasis by chemotherapy when combined with radiotherapy in locoregionally advanced nasopharyngeal carcinoma: a prospective study. Med Oncol. 2013;30:322.

    Article  CAS  PubMed  Google Scholar 

  27. Ren G, Baritaki S, Marathe H, Feng J, Park S, Beach S, et al. Polycomb protein ezh2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor rkip in breast and prostate cancer. Cancer Res. 2012;72:3091–104.

    Article  CAS  PubMed  Google Scholar 

  28. Cardile V, Malaponte G, Loreto C, Libra M, Caggia S, Trovato FM, et al. Raf kinase inhibitor protein (rkip) and phospho-rkip expression in melanomas. Acta Histochem. 2013;115:795–802.

    Article  CAS  PubMed  Google Scholar 

  29. Koelzer VH, Karamitopoulou E, Dawson H, Kondi-Pafiti A, Zlobec I, Lugli A. Geographic analysis of rkip expression and its clinical relevance in colorectal cancer. Br J Cancer. 2013;108:2088–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng X, Chang RL, Cui XX, Avila G, Huang MT, Liu Y, et al. Inhibition of nf-kappab by (e)3-[(4-methylphenyl)-sulfonyl]-2-propenenitrile (bay11-7082; bay) is associated with enhanced 12-o-tetradecanoylphorbol-13-acetate-induced growth suppression and apoptosis in human prostate cancer pc-3 cells. Int J Oncol. 2008;32:257–64.

    CAS  PubMed  Google Scholar 

  31. Martinho O, Pinto F, Granja S, Miranda-Goncalves V, Moreira MA, Ribeiro LF, et al. Rkip inhibition in cervical cancer is associated with higher tumor aggressive behavior and resistance to cisplatin therapy. PLoS One. 2013;8:e59104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zaravinos A, Chatziioannou M, Lambrou GI, Boulalas I, Delakas D, Spandidos DA. Implication of raf and rkip genes in urinary bladder cancer. Pathol Oncol Res: POR. 2011;17:181–90.

    Article  CAS  PubMed  Google Scholar 

  33. Zaravinos A, Kanellou P, Baritaki S, Bonavida B, Spandidos DA. Braf and rkip are significantly decreased in cutaneous squamous cell carcinoma. Cell Cycle. 2009;8:1402–8.

    Article  CAS  PubMed  Google Scholar 

  34. Zaravinos A, Kanellou P, Lambrou GI, Spandidos DA. Gene set enrichment analysis of the nf-kappab/snail/yy1/rkip circuitry in multiple myeloma. Tumour Biol. 2014;35:4987–5005.

    Article  CAS  PubMed  Google Scholar 

  35. Fried I, Wolfler A, Quehenberger F, Hoefler G, Sill H, Zebisch A. Mutations indnmt3a and loss of rkip are independent events in acute monocytic leukemia. Haematologica. 2012;97:1936–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zebisch A, Wolfler A, Fried I, Wolf O, Lind K, Bodner C, et al. Frequent loss of raf kinase inhibitor protein expression in acute myeloid leukemia. Leukemia. 2012;26:1842–9.

    Article  CAS  PubMed  Google Scholar 

  37. Klysik J, Theroux SJ, Sedivy JM, Moffit JS, Boekelheide K. Signaling crossroads: the function of raf kinase inhibitory protein in cancer, the central nervous system and reproduction. Cell Signal. 2008;20:1–9.

    Article  CAS  PubMed  Google Scholar 

  38. Hagan S, Garcia R, Dhillon A, Kolch W. Raf kinase inhibitor protein regulation of raf and mapk signaling. Methods Enzymol. 2006;407:248–59.

    Article  CAS  PubMed  Google Scholar 

  39. Khamis ZI, Iczkowski KA, Sang QX. Metastasis suppressors in human benign prostate, intraepithelial neoplasia, and invasive cancer: their prospects as therapeutic agents. Med Res Rev. 2012;32:1026–77.

    Article  CAS  PubMed  Google Scholar 

  40. Hao C, Wei S, Tong Z, Li S, Shi Y, Wang X, et al. The effects of rkip gene expression on the biological characteristics of human triple-negative breast cancer cells in vitro. Tumour Biol. 2012;33:1159–67.

    Article  CAS  PubMed  Google Scholar 

  41. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, et al. Ras/raf/mek/erk and pi3k/pten/akt/mtor cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget. 2012;3:1068–111.

    PubMed  PubMed Central  Google Scholar 

  42. Britten CD. Pi3k and mek inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemother Pharmacol. 2013;71:1395–409.

    Article  CAS  PubMed  Google Scholar 

  43. Beshir AB, Ren G, Magpusao AN, Barone LM, Yeung KC, Fenteany G. Raf kinase inhibitor protein suppresses nuclear factor-kappab-dependent cancer cell invasion through negative regulation of matrix metalloproteinase expression. Cancer Lett. 2010;299:137–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ciarmela P, Marzioni D, Islam MS, Gray PC, Terracciano L, Lorenzi T, et al. Possible role of rkip in cytotrophoblast migration: immunohistochemical and in vitro studies. J Cell Physiol. 2012;227:1821–8.

    Article  CAS  PubMed  Google Scholar 

  45. Odabaei G, Chatterjee D, Jazirehi AR, Goodglick L, Yeung K, Bonavida B. Raf-1 kinase inhibitor protein: structure, function, regulation of cell signaling, and pivotal role in apoptosis. Adv Cancer Res. 2004;91:169–200.

    Article  CAS  PubMed  Google Scholar 

  46. Jazirehi AR, Vega MI, Chatterjee D, Goodglick L, Bonavida B. Inhibition of the raf-mek1/2-erk1/2 signaling pathway, bcl-xl down-regulation, and chemosensitization of non-Hodgkin’s lymphoma b cells by rituximab. Cancer Res. 2004;64:7117–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of Jiangsu Province, China (BK20131199).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Sun, B., Zhu, J. et al. Expression of RKIP in chronic myelogenous leukemia K562 cell and inhibits cell proliferation by regulating the ERK/MAPK pathway. Tumor Biol. 35, 10057–10066 (2014). https://doi.org/10.1007/s13277-014-2312-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2312-3

Keywords

Navigation