Skip to main content

Advertisement

Log in

Gene set enrichment analysis of the NF-κB/Snail/YY1/RKIP circuitry in multiple myeloma

  • Research Article
  • Published:
Tumor Biology

Abstract

The presence of a dysregulated NF-κB/Snail/YY1/RKIP loop was recently established in metastatic prostate cancer cells and non-Hodgkin’s lymphoma; however, its involvement in multiple myeloma (MM) has yet to be investigated. Aim of the study was to investigate the role of the NF-κB/Snail/YY1/RKIP circuitry in MM and how each gene is correlated with the remaining genes of the loop. Using gene set enrichment analysis and gene neighbours analysis in data received from four datasets included in the Multiple Myeloma Genomics Portal of the Multiple Myeloma Research Consortium, we identified various enriched gene sets associated with each member of the NF-κB/Snail/YY1/RKIP circuitry. In each dataset, the 20 most co-expressed genes with the circuitry genes were isolated subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment. Among many, we highlighted on FNDC3B, TPD52, BBX, MBNL1 and MFAP2. Many co-expressed genes participated in the regulation of metabolic processes and nucleic acid binding, or were transcription factor binding genes and genes with metallopeptidase activity. The transcription factors FOXO4, GATA binding factor, Sp1 and AP4 most likely affect the expression of the NF-κB/Snail/YY1/RKIP circuitry genes. Computational analysis of various GEO datasets revealed elevated YY1 and RKIP levels in MM vs. the normal plasma cells, as well as elevated RKIP levels in MM vs. normal B lymphocytes. The present study highlights the relationships of the NF-κB/Snail/YY1/RKIP circuitry genes with specific cancer-related gene sets in multiple myeloma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukemia

BBX:

Bobby sox homolog (Drosophila)

DLBCL:

Diffuse large B-cell lymphoma

EMT:

Epithelial-to-mesenchymal transition

ES:

Enrichment score

FNDC3B:

Fibronectin type III domain containing 3B

GEO:

Gene expression omnibus

GO:

Gene ontology

GSEA:

Gene set enrichment analysis

KEGG:

Kyoto encyclopedia of genes and genomes

MBNL1:

Muscleblind-like splicing regulator 1

MFAP2:

Microfibrillar-associated protein 2

MGUS:

Monoclonal gammopathy of undetermined significance

MM:

Multiple myeloma

NES:

Normalised enrichment score

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NHL:

Non-Hodgkin’s lymphoma

PTEN:

Phosphatase and tensin homologue

RKIP:

Raf-1 kinase inhibitor protein

Snail:

Snail family zinc finger 1

TFBMs:

Transcription factor binding motifs

TPD52:

Tumour protein D52

YY1:

Yin Yang 1

References

  1. Kyle RA, Rajkumar SV. Multiple myeloma. The New England journal of medicine. 2004;351:1860–73.

    Article  CAS  PubMed  Google Scholar 

  2. Mitsiades CS, Mitsiades N, Munshi NC, Anderson KC. Focus on multiple myeloma. Cancer cell. 2004;6:439–44.

    Article  CAS  PubMed  Google Scholar 

  3. Barlogie B, Shaughnessy J, Tricot G, Jacobson J, Zangari M, Anaissie E, et al. Treatment of multiple myeloma. Blood. 2004;103:20–32.

    Article  CAS  PubMed  Google Scholar 

  4. Rajkumar SV, Kyle RA. Multiple myeloma: diagnosis and treatment. Mayo Clinic proceedings. 2005;80:1371–82.

    Article  PubMed  Google Scholar 

  5. Richardson PG, Mitsiades CS, Hideshima T, Anderson KC. Novel biological therapies for the treatment of multiple myeloma. Best practice & research. 2005;18:619–34.

    CAS  Google Scholar 

  6. Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, et al. NF-kappaB is essential for epithelial–mesenchymal transition and metastasis in a model of breast cancer progression. The Journal of clinical investigation. 2004;114:569–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117:927–39.

    Article  CAS  PubMed  Google Scholar 

  8. Barrallo-Gimeno A, Nieto MA. The snail genes as inducers of cell movement and survival: implications in development and cancer. Development (Cambridge, England). 2005;132:3151–61.

    Article  CAS  Google Scholar 

  9. Bonavida B, Jazirehi A, Vega MI, Huerta-Yepez S, Baritaki S: Roles each of Snail, Yin Yang 1 and RKIP in the regulation of tumor cells chemo-immuno-resistance to apoptosis. Forum on immunopathological diseases and therapeutics 2013;4

  10. Baritaki S, Chapman A, Yeung K, Spandidos DA, Palladino M, Bonavida B. Inhibition of epithelial to mesenchymal transition in metastatic prostate cancer cells by the novel proteasome inhibitor, NPI-0052: pivotal roles of Snail repression and RKIP induction. Oncogene. 2009;28:3573–85.

    Article  CAS  PubMed  Google Scholar 

  11. Huerta-Yepez S, Vega M, Jazirehi A, Garban H, Hongo F, Cheng G, et al. Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xL expression. Oncogene. 2004;23:4993–5003.

    Article  CAS  PubMed  Google Scholar 

  12. Huerta-Yepez S, Vega M, Escoto-Chavez SE, Murdock B, Sakai T, Baritaki S, et al. Nitric oxide sensitizes tumor cells to TRAIL-induced apoptosis via inhibition of the DR5 transcription repressor Yin Yang 1. Nitric Oxide. 2009;20:39–52.

    Article  CAS  PubMed  Google Scholar 

  13. Vega MI, Jazirehi AR, Huerta-Yepez S, Bonavida B. Rituximab-induced inhibition of YY1 and Bcl-xL expression in Ramos non-Hodgkin’s lymphoma cell line via inhibition of NF-kappa b activity: role of YY1 and Bcl-xL in fas resistance and chemoresistance, respectively. J Immunol. 2005;175:2174–83.

    Article  CAS  PubMed  Google Scholar 

  14. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S, et al. The molecular classification of multiple myeloma. Blood. 2006;108:2020–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carrasco DR, Tonon G, Huang Y, Zhang Y, Sinha R, Feng B, et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer cell. 2006;9:313–25.

    Article  CAS  PubMed  Google Scholar 

  17. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer cell. 2007;12:131–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science (New York, NY). 1999;286:531–7.

    Article  CAS  Google Scholar 

  19. Zaravinos A, Lambrou GI, Volanis D, Delakas D, Spandidos DA. Spotlight on differentially expressed genes in urinary bladder cancer. PloS one. 2011;6:e18255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zaravinos A, Radojicic J, Lambrou GI, Volanis D, Delakas D, Stathopoulos EN, et al. Expression of miRNAs involved in angiogenesis, tumor cell proliferation, tumor suppressor inhibition, epithelial-mesenchymal transition and activation of metastasis in bladder cancer. The Journal of urology. 2012;188:615–23.

    Article  CAS  PubMed  Google Scholar 

  21. Zaravinos A, Volanis D, Lambrou GI, Delakas D, Spandidos DA. Role of the angiogenic components, VEGFA, FGF2, OPN and RHOC, in urothelial cell carcinoma of the urinary bladder. Oncology reports. 2012;28:1159–66.

    PubMed  PubMed Central  Google Scholar 

  22. Zhang B, Kirov S, Snoddy J. Webgestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic acids research. 2005;33:W741–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chartoumpekis DV, Zaravinos A, Ziros PG, Iskrenova RP, Psyrogiannis AI, Kyriazopoulou VE, et al. Differential expression of micrornas in adipose tissue after long-term high-fat diet-induced obesity in mice. PloS one. 2012;7:e34872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lambrou GI, Zaravinos A, Adamaki M, Spandidos DA, Tzortzatou-Stathopoulou F, Vlachopoulos S. Pathway simulations in common oncogenic drivers of leukemic and rhabdomyosarcoma cells: a systems biology approach. International journal of oncology. 2012;40:1365–90.

    CAS  PubMed  Google Scholar 

  25. Zaravinos A, Lambrou GI, Boulalas I, Delakas D, Spandidos DA. Identification of common differentially expressed genes in urinary bladder cancer. PloS one. 2011;6:e18135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gutierrez NC, Ocio EM, de Las Rivas J, Maiso P, Delgado M, Ferminan E, et al. Gene expression profiling of b lymphocytes and plasma cells from Waldenstrom’s macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals. Leukemia. 2007;21:541–9.

    Article  CAS  PubMed  Google Scholar 

  27. Mattioli M, Agnelli L, Fabris S, Baldini L, Morabito F, Bicciato S, et al. Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma. Oncogene. 2005;24:2461–73.

    Article  CAS  PubMed  Google Scholar 

  28. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.

    Article  CAS  PubMed  Google Scholar 

  29. Conticello C, Giuffrida R, Adamo L, Anastasi G, Martinetti D, Salomone E, et al. NF-kappaB localization in multiple myeloma plasma cells and mesenchymal cells. Leukemia research. 2011;35:52–60.

    Article  CAS  PubMed  Google Scholar 

  30. Hideshima T, Anderson KC. Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer. 2002;2:927–37.

    Article  CAS  PubMed  Google Scholar 

  31. Beach S, Tang H, Park S, Dhillon AS, Keller ET, Kolch W, et al. Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene. 2008;27:2243–8.

    Article  CAS  PubMed  Google Scholar 

  32. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer cell. 2007;12:115–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, et al. NF-kappaB as a therapeutic target in multiple myeloma. The Journal of biological chemistry. 2002;277:16639–47.

    Article  CAS  PubMed  Google Scholar 

  34. Baud V, Karin M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov. 2009;8:33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bharti AC, Shishodia S, Reuben JM, Weber D, Alexanian R, Raj-Vadhan S, et al. Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood. 2004;103:3175–84.

    Article  CAS  PubMed  Google Scholar 

  36. Fabre C, Mimura N, Bobb K, Kong SY, Gorgun G, Cirstea D, et al. Dual inhibition of canonical and noncanonical NF-kappaB pathways demonstrates significant antitumor activities in multiple myeloma. Clin Cancer Res. 2012;18:4669–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peiro S, Escriva M, Puig I, Barbera MJ, Dave N, Herranz N, et al. Snail1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic acids research. 2006;34:2077–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Julien S, Puig I, Caretti E, Bonaventure J, Nelles L, van Roy F, et al. Activation of NF-kappaB by Akt upregulates snail expression and induces epithelium mesenchyme transition. Oncogene. 2007;26:7445–56.

    Article  CAS  PubMed  Google Scholar 

  39. Palmer MB, Majumder P, Cooper JC, Yoon H, Wade PA, Boss JM. Yin yang 1 regulates the expression of snail through a distal enhancer. Mol Cancer Res. 2009;7:221–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, et al. Correlation of snail expression with histological grade and lymph node status in breast carcinomas. Oncogene. 2002;21:3241–6.

    Article  CAS  PubMed  Google Scholar 

  41. Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, et al. Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. The American journal of pathology. 2002;161:1881–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiao W, Miyazaki K, Kitajima Y. Inverse correlation between e-cadherin and snail expression in hepatocellular carcinoma cell lines in vitro and in vivo. British journal of cancer. 2002;86:98–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Elloul S, Silins I, Trope CG, Benshushan A, Davidson B, Reich R. Expression of e-cadherin transcriptional regulators in ovarian carcinoma. Virchows Arch. 2006;449:520–8.

    Article  CAS  PubMed  Google Scholar 

  44. Yokoyama K, Kamata N, Hayashi E, Hoteiya T, Ueda N, Fujimoto R, et al. Reverse correlation of e-cadherin and Snail expression in oral squamous cell carcinoma cells in vitro. Oral oncology. 2001;37:65–71.

    Article  CAS  PubMed  Google Scholar 

  45. Yang MH, Chang SY, Chiou SH, Liu CJ, Chi CW, Chen PM, et al. Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Oncogene. 2007;26:1459–67.

    Article  CAS  PubMed  Google Scholar 

  46. Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ. Wnt-dependent regulation of the e-cadherin repressor snail. The Journal of biological chemistry. 2005;280:11740–8.

    Article  CAS  PubMed  Google Scholar 

  47. Jazirehi AR, Huerta-Yepez S, Cheng G, Bonavida B. Rituximab (chimeric anti-CD20 monoclonal antibody) inhibits the constitutive nuclear factor-{kappa}B signaling pathway in non-Hodgkin’s lymphoma B-cell lines: role in sensitization to chemotherapeutic drug-induced apoptosis. Cancer research. 2005;65:264–76.

    CAS  PubMed  Google Scholar 

  48. Bonavida B, Huerta-Yepez S, Baritaki S, Vega M, Liu H, Chen H, et al. Overexpression of Yin Yang 1 in the pathogenesis of human hematopoietic malignancies. Critical reviews in oncogenesis. 2011;16:261–7.

    Article  CAS  PubMed  Google Scholar 

  49. Martinez-Paniagua MA, Baritaki S, Huerta-Yepez S, Ortiz-Navarrete VF, Gonzalez-Bonilla C, Bonavida B, et al. Mcl-1 and YY1 inhibition and induction of DR5 by the BH3-mimetic obatoclax (GX15-070) contribute in the sensitization of B-NHL cells to TRAIL apoptosis. Cell cycle (Georgetown, Tex). 2011;10:2792–805.

    Article  CAS  Google Scholar 

  50. Gordon S, Akopyan G, Garban H, Bonavida B. Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene. 2006;25:1125–42.

    Article  CAS  PubMed  Google Scholar 

  51. Castellano G, Torrisi E, Ligresti G, Malaponte G, Militello L, Russo AE, et al. The involvement of the transcription factor Yin Yang 1 in cancer development and progression. Cell cycle (Georgetown, Tex). 2009;8:1367–72.

    Article  CAS  Google Scholar 

  52. Castellano G, Torrisi E, Ligresti G, Nicoletti F, Malaponte G, Traval S, McCubrey JA, Canevari S, Libra M: Yin Yang 1 overexpression in diffuse large B-cell lymphoma is associated with B-cell transformation and tumor progression. Cell cycle (Georgetown, Tex);9:557–563.

  53. Dukers DF, van Galen JC, Giroth C, Jansen P, Sewalt RG, Otte AP, et al. Unique polycomb gene expression pattern in Hodgkin’s lymphoma and Hodgkin’s lymphoma-derived cell lines. The American journal of pathology. 2004;164:873–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grubach L, Juhl-Christensen C, Rethmeier A, Olesen LH, Aggerholm A, Hokland P, et al. Gene expression profiling of polycomb, hox and meis genes in patients with acute myeloid leukaemia. European journal of haematology. 2008;81:112–22.

    Article  CAS  PubMed  Google Scholar 

  55. Sakhinia E, Glennie C, Hoyland JA, Menasce LP, Brady G, Miller C, et al. Clinical quantitation of diagnostic and predictive gene expression levels in follicular and diffuse large B-cell lymphoma by RT-PCR gene expression profiling. Blood. 2007;109:3922–8.

    Article  CAS  PubMed  Google Scholar 

  56. Zaravinos A, Spandidos DA. Yin yang 1 expression in human tumors. Cell cycle (Georgetown, Tex). 2010;9:512–22.

    Article  CAS  Google Scholar 

  57. Zaravinos A, Spandidos DA. Yin yang 1 as a prognostic factor. Cell cycle (Georgetown, Tex). 2009;8:1305.

    Article  CAS  Google Scholar 

  58. Potluri V, Noothi SK, Vallabhapurapu SD, Yoon SO, Driscoll JJ, Lawrie CH, et al. Transcriptional repression of Bim by a novel YY1-relA complex is essential for the survival and growth of multiple myeloma. PloS one. 2013;8:e66121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Davies FE, Dring AM, Li C, Rawstron AC, Shammas MA, O'Connor SM, et al. Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis. Blood. 2003;102:4504–11.

    Article  CAS  PubMed  Google Scholar 

  60. Bonavida B, Baritaki S. The novel role of Yin Yang 1 in the regulation of epithelial to mesenchymal transition in cancer via the dysregulated NF-kappaB/snail/YY1/RKIP/PTEN circuitry. Critical reviews in oncogenesis. 2011;16:211–26.

    Article  PubMed  Google Scholar 

  61. Demidem A, Lam T, Alas S, Hariharan K, Hanna N, Bonavida B. Chimeric anti-CD20 (IDEC-C2B8) monoclonal antibody sensitizes a B cell lymphoma cell line to cell killing by cytotoxic drugs. Cancer biotherapy & radiopharmaceuticals. 1997;12:177–86.

    Article  CAS  Google Scholar 

  62. Siednienko J, Maratha A, Yang S, Mitkiewicz M, Miggin SM, Moynagh PN. Nuclear factor kappaB subunits RelB and cRel negatively regulate Toll-like receptor 3-mediated beta-interferon production via induction of transcriptional repressor protein YY1. The Journal of biological chemistry. 2011;286:44750–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Baritaki S, Huerta-Yepez S, Sakai T, Spandidos DA, Bonavida B. Chemotherapeutic drugs sensitize cancer cells to TRAIL-mediated apoptosis: up-regulation of DR5 and inhibition of Yin Yang 1. Molecular cancer therapeutics. 2007;6:1387–99.

    Article  CAS  PubMed  Google Scholar 

  64. Luo C, Lu X, Stubbs L, Kim J. Rapid evolution of a recently retroposed transcription factor YY2 in mammalian genomes. Genomics. 2006;87:348–55.

    Article  CAS  PubMed  Google Scholar 

  65. Klar M. Yin Yang 2: the great unknown within the Yin Yang 1 regulatory network. Critical reviews in oncogenesis. 2011;16:239–43.

    Article  PubMed  Google Scholar 

  66. Granovsky AE, Rosner MR. Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor. Cell research. 2008;18:452–7.

    Article  CAS  PubMed  Google Scholar 

  67. Corbit KC, Trakul N, Eves EM, Diaz B, Marshall M, Rosner MR. Activation of Raf-1 signaling by protein kinase c through a mechanism involving Raf kinase inhibitory protein. The Journal of biological chemistry. 2003;278:13061–8.

    Article  CAS  PubMed  Google Scholar 

  68. Al-Mulla F, Hagan S, Behbehani AI, Bitar MS, George SS, Going JJ, et al. Raf kinase inhibitor protein expression in a survival analysis of colorectal cancer patients. J Clin Oncol. 2006;24:5672–9.

    Article  CAS  PubMed  Google Scholar 

  69. Hagan S, Al-Mulla F, Mallon E, Oien K, Ferrier R, Gusterson B, et al. Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clin Cancer Res. 2005;11:7392–7.

    Article  CAS  PubMed  Google Scholar 

  70. Schuierer MM, Bataille F, Hagan S, Kolch W, Bosserhoff AK. Reduction in Raf kinase inhibitor protein expression is associated with increased Ras-extracellular signal-regulated kinase signaling in melanoma cell lines. Cancer research. 2004;64:5186–92.

    Article  CAS  PubMed  Google Scholar 

  71. Zaravinos A, Bizakis J, Spandidos DA. RKIP and BRAF aberrations in human nasal polyps and the adjacent turbinate mucosae. Cancer letters. 2008;264:288–98.

    Article  CAS  PubMed  Google Scholar 

  72. Zaravinos A, Chatziioannou M, Lambrou GI, Boulalas I, Delakas D, Spandidos DA. Implication of RAF and RKIP genes in urinary bladder cancer. Pathol Oncol Res. 2011;17:181–90.

    Article  CAS  PubMed  Google Scholar 

  73. Zaravinos A, Kanellou P, Baritaki S, Bonavida B, Spandidos DA. BRAF and RKIP are significantly decreased in cutaneous squamous cell carcinoma. Cell cycle (Georgetown, Tex). 2009;8:1402–8.

    Article  CAS  Google Scholar 

  74. Zebisch A, Haller M, Hiden K, Goebel T, Hoefler G, Troppmair J, et al. Loss of RAF kinase inhibitor protein is a somatic event in the pathogenesis of therapy-related acute myeloid leukemias with c-RAF germline mutations. Leukemia. 2009;23:1049–53.

    Article  CAS  PubMed  Google Scholar 

  75. Fried I, Wolfler A, Quehenberger F, Hoefler G, Sill H, Zebisch A. Mutations indnmt3a and loss of rkip are independent events in acute monocytic leukemia. Haematologica. 2012;97:1936–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Takemura T, Nakamura S, Yokota D, Hirano I, Ono T, Shigeno K, et al. Reduction of Raf kinase inhibitor protein expression by Bcr-Bbl contributes to chronic myelogenous leukemia proliferation. The Journal of biological chemistry. 2010;285:6585–94.

    Article  CAS  PubMed  Google Scholar 

  77. Fu Z, Kitagawa Y, Shen R, Shah R, Mehra R, Rhodes D, et al. Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer. Prostate. 2006;66:248–56.

    Article  CAS  PubMed  Google Scholar 

  78. Fu Z, Smith PC, Zhang L, Rubin MA, Dunn RL, Yao Z, et al. Effects of raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. J Natl Cancer Inst. 2003;95:878–89.

    Article  CAS  PubMed  Google Scholar 

  79. Garcia E, Marcos-Gutierrez C, Del Mar Lorente M, Moreno JC, Vidal M. RYBP, a new repressor protein that interacts with components of the mammalian polycomb complex, and with the transcription factor YY1. The EMBO journal. 1999;18:3404–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Baritaki S, Yeung K, Palladino M, Berenson J, Bonavida B. Pivotal roles of snail inhibition and RKIP induction by the proteasome inhibitor NPI-0052 in tumor cell chemoimmunosensitization. Cancer research. 2009;69:8376–85.

    Article  CAS  PubMed  Google Scholar 

  81. Baritaki S, Katsman A, Chatterjee D, Yeung KC, Spandidos DA, Bonavida B. Regulation of tumor cell sensitivity to trail-induced apoptosis by the metastatic suppressor raf kinase inhibitor protein via Yin Yang 1 inhibition and death receptor 5 up-regulation. J Immunol. 2007;179:5441–53.

    Article  CAS  PubMed  Google Scholar 

  82. Szeliga M, Obara-Michlewska M, Matyja E, Lazarczyk M, Lobo C, Hilgier W, et al. Transfection with liver-type glutaminase cdna alters gene expression and reduces survival, migration and proliferation of t98g glioma cells. Glia. 2009;57:1014–23.

    Article  PubMed  Google Scholar 

  83. Hargrave BY, Tiangco DA, Lattanzio FA, Beebe SJ. Cocaine, not morphine, causes the generation of reactive oxygen species and activation of NF-kappaB in transiently cotransfected heart cells. Cardiovascular toxicology. 2003;3:141–51.

    Article  CAS  PubMed  Google Scholar 

  84. Cai C, Rajaram M, Zhou X, Liu Q, Marchica J, Li J, et al. Activation of multiple cancer pathways and tumor maintenance function of the 3q amplified oncogene FNDC3B. Cell cycle (Georgetown, Tex). 2012;11:1773–81.

    Article  CAS  Google Scholar 

  85. Barbaric D, Byth K, Dalla-Pozza L, Byrne JA. Expression of tumor protein D52-like genes in childhood leukemia at diagnosis: clinical and sample considerations. Leukemia research. 2006;30:1355–63.

    Article  CAS  PubMed  Google Scholar 

  86. Urtreger AJ, Werbajh SE, Verrecchia F, Mauviel A, Puricelli LI, Kornblihtt AR, et al. Fibronectin is distinctly downregulated in murine mammary adenocarcinoma cells with high metastatic potential. Oncology reports. 2006;16:1403–10.

    CAS  PubMed  Google Scholar 

  87. Boutros R, Fanayan S, Shehata M, Byrne JA. The tumor protein D52 family: many pieces, many puzzles. Biochemical and biophysical research communications. 2004;325:1115–21.

    Article  CAS  PubMed  Google Scholar 

  88. Thomas DD, Frey CL, Messenger SW, August BK, Groblewski GE. A role for tumor protein TPD52 phosphorylation in endo-membrane trafficking during cytokinesis. Biochemical and biophysical research communications. 2010;402:583–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rubin MA, Varambally S, Beroukhim R, Tomlins SA, Rhodes DR, Paris PL, et al. Overexpression, amplification, and androgen regulation of TPD52 in prostate cancer. Cancer research. 2004;64:3814–22.

    Article  CAS  PubMed  Google Scholar 

  90. Balleine RL, Fejzo MS, Sathasivam P, Basset P, Clarke CL, Byrne JA. The hD52 (TPD52) gene is a candidate target gene for events resulting in increased 8q21 copy number in human breast carcinoma. Genes, chromosomes & cancer. 2000;29:48–57.

    Article  CAS  Google Scholar 

  91. Machado I, Lopez-Guerrero JA, Calabuig-Farinas S, Hardy JR, Scotlandi K, Picci P, et al. Clinical significance of tumor protein D52 immunostaining in a large series of Ewing’s sarcoma family of tumors. Pediatr Dev Pathol. 2011;14:255–6.

    Article  CAS  PubMed  Google Scholar 

  92. Byrne JA, Mattei MG, Basset P. Definition of the tumor protein D52 (TPD52) gene family through cloning of D52 homologues in human (hD53) and mouse (mD52). Genomics. 1996;35:523–32.

    Article  CAS  PubMed  Google Scholar 

  93. Joshi P, Greco TM, Guise AJ, Luo Y, Yu F, Nesvizhskii AI, et al. The functional interactome landscape of the human histone deacetylase family. Molecular systems biology. 2013;9:672.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Persaud A, Alberts P, Amsen EM, Xiong X, Wasmuth J, Saadon Z, et al. Comparison of substrate specificity of the ubiquitin ligases Nedd4 and Nedd4-2 using proteome arrays. Molecular systems biology. 2009;5:333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Kamynina E, Debonneville C, Bens M, Vandewalle A, Staub O. A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel. Faseb J. 2001;15:204–14.

    Article  CAS  PubMed  Google Scholar 

  96. Silveira NJ, Varuzza L, Machado-Lima A, Lauretto MS, Pinheiro DG, Rodrigues RV, et al. Searching for molecular markers in head and neck squamous cell carcinomas (HNSCC) by statistical and bioinformatic analysis of larynx-derived sage libraries. BMC medical genomics. 2008;1:56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Soler Artigas M, Loth DW, Wain LV, Gharib SA, Obeidat M, Tang W, et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nature genetics. 2011;43:1082–90.

    Article  PubMed  CAS  Google Scholar 

  98. Combs MD, Knutsen RH, Broekelmann TJ, Toennies HM, Brett TJ, Miller CA, et al. Microfibril-associated glycoprotein 2 (MAGP2) loss of function has pleiotropic effects in vivo. The Journal of biological chemistry. 2013;288:28869–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. Rnai screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478:524–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. Bet bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci U S A. 2011;108:16669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA. Brd4-nut fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer research. 2003;63:304–7.

    CAS  PubMed  Google Scholar 

  103. Rodriguez RM, Huidobro C, Urdinguio RG, Mangas C, Soldevilla B, Dominguez G, et al. Aberrant epigenetic regulation of bromodomain Brd4 in human colon cancer. Journal of molecular medicine (Berlin, Germany). 2012;90:587–95.

    Article  CAS  Google Scholar 

  104. Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468:1119–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Devaiah BN, Lewis BA, Cherman N, Hewitt MC, Albrecht BK, Robey PG, et al. Brd4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc Natl Acad Sci U S A. 2012;109:6927–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fernandez AM, Jimenez S, Mecha M, Davila D, Guaza C, Vitorica J, et al. Regulation of the phosphatase calcineurin by insulin-like growth factor I unveils a key role of astrocytes in Alzheimer’s pathology. Molecular psychiatry. 2012;17:705–18.

    Article  CAS  PubMed  Google Scholar 

  107. Kawada H, Nishiyama C, Takagi A, Tokura T, Nakano N, Maeda K, et al. Transcriptional regulation of atp2c1 gene by sp1 and YY1 and reduced function of its promoter in Hailey–Hailey disease keratinocytes. The Journal of investigative dermatology. 2005;124:1206–14.

    Article  CAS  PubMed  Google Scholar 

  108. Jung P, Hermeking H. The c-MYC-AP4-p21 cascade. Cell cycle (Georgetown, Tex. 2009;8:982–9.

    Article  CAS  Google Scholar 

  109. Jackstadt R, Roh S, Neumann J, Jung P, Hoffmann R, Horst D, et al. Ap4 is a mediator of epithelial-mesenchymal transition and metastasis in colorectal cancer. The Journal of experimental medicine. 2013;210:1331–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos Zaravinos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 263 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaravinos, A., Kanellou, P., Lambrou, G.Ι. et al. Gene set enrichment analysis of the NF-κB/Snail/YY1/RKIP circuitry in multiple myeloma. Tumor Biol. 35, 4987–5005 (2014). https://doi.org/10.1007/s13277-014-1659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1659-9

Keywords

Navigation