Skip to main content

Advertisement

Log in

Extracellular vesicles shed by glioma cells: pathogenic role and clinical value

  • Review
  • Published:
Tumor Biology

Abstract

Extracellular vesicles (EVs) are commonly used by normal and tumor cells for communication at long distances to exchange by complex molecular messages and deliver a variety of essential biomolecules. EVs (exosomes and microvesicles) released in large numbers by glioma cells represent a key mechanism of intercellular signaling. Tumor-derived EVs are produced to regulate all vital functions of tumor cells including growth, proliferation, migration, survival, malignancy, invasion, and resistance to host anti-tumor immunity and anti-cancer drugs. Glioma EVs were shown to carry a variety of biomolecules such as oncogenic growth factors, receptors, enzymes, transcription factors, signaling and immunomodulatory molecules, DNA of mutated and nonmutated oncogenes, RNA transcripts, and noncoding RNA including retrotransposons, vault RNA, and microRNAs. Glioma-derived EVs can be useful as a source of potential tumor-associated biomarkers essential for development and validation of new diagnostic and prognostic tools for glioma and glioblastoma. Tumor EVs are enriched with glioma antigens that could be helpful, for example, for development of new advanced anti-tumor immune vaccines based on autologous dendritic cells stimulated by tumor-specific antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Akt:

V-akt murine thymoma viral oncogene homolog

CSF:

Cerebrospinal fluid

DC:

Dendritic cell

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EGFR:

EGF receptor

EGFRvIII:

EGFR variant III (mutated)

ErbB2:

V-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2

ERK:

Extracellular signal-regulated kinase

EV:

Extracellular vesicle

FAK:

Focal adhesion kinase

FGF:

Fibroblast growth factor

GBM:

Glioblastoma multiforme

HSP:

Heat shock protein

HSPG:

Heparan sulfate proteoglycan

IDH:

Isocitrate dehydrogenase

IGFBP:

Insulin-like growth factor-binding protein

IL:

Interleukin

LTBP:

Latent-TGF-β-binding protein

MDR:

Multidrug resistance

MHC:

Major histocompatibility complex

miRNA:

MicroRNA

MMP:

Matrix metalloproteinase

MSC:

Mesenchymal stem cells

MV:

Microvesicle

MVB:

Multivesicular body

MVP:

Major vault protein

NF-κB:

Nuclear factor kappa B

PDGF:

Platelet derived growth factor

PDGFR:

PDGF receptor

PI3K:

Phosphatidylinositol-4,5-bisphosphate 3-kinase

PTEN:

Phosphatase and tensin homolog

TGF:

Transforming growth factor

Trk:

Receptor tyrosine kinases

VEGF:

Vascular endothelial growth factor

VEGFR:

VEGF receptor

References

  1. Hanson PI, Cashikar A. Multivesicular body morphogenesis. Annu Rev Cell Dev Biol. 2012;28:337–62. PMID: 22831642.

    CAS  PubMed  Google Scholar 

  2. Morita E. Differential requirements of mammalian ESCRTs in multivesicular body formation, virus budding and cell division. FEBS J. 2012;279(8):1399–406. PMID: 22340600.

    CAS  PubMed  Google Scholar 

  3. Chen BJ, Lamb RA. Mechanisms for enveloped virus budding: can some viruses do without an ESCRT? Virology. 2008;372(2):221–32. PMID: 18063004.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Von Bartheld CS, Altick AL. Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol. 2011;93(3):313–40. PMID: 21216273.

    Google Scholar 

  5. Théry C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol. 2001;166(12):7309–18. PMID: 11390481.

    PubMed  Google Scholar 

  6. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319(5867):1244–7. PMID: 18309083.

    CAS  PubMed  Google Scholar 

  7. Muntasell A, Berger AC, Roche PA. T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. EMBO J. 2007;26(19):4263–72. PMID: 17805347.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic. 2010;11(5):675–87. PMID: 20136776.

    CAS  PubMed  Google Scholar 

  9. Doeuvre L, Plawinski L, Toti F, Anglés-Cano E. Cell-derived microparticles: a new challenge in neuroscience. J Neurochem. 2009;110(2):457–68. PMID: 19457085.

    CAS  PubMed  Google Scholar 

  10. Al-Nedawi K, Meehan B, Rak J. Microvesicles: messengers and mediators of tumor progression. Cell Cycle. 2009;8(13):2014–8. PMID: 19535896.

    CAS  PubMed  Google Scholar 

  11. Turola E, Furlan R, Bianco F, Matteoli M, Verderio C. Microglial microvesicle secretion and intercellular signaling. Front Physiol. 2012;3:149. PMID: 22661954.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm. 2010;117(1):1–4. PMID: 19680595.

    CAS  PubMed  Google Scholar 

  13. Castejón OJ, Arismendi GJ. Nerve cell death types in the edematous human cerebral cortex. J Submicrosc Cytol Pathol. 2006;38(1):21–36. PMID: 17283964.

    PubMed  Google Scholar 

  14. Bovellan M, Fritzsche M, Stevens C, Charras G. Death-associated protein kinase (DAPK) and signal transduction: blebbing in programmed cell death. FEBS J. 2010;277(1):58–65. PMID: 19878312.

    CAS  PubMed  Google Scholar 

  15. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006; Chapter 3:Unit 3.22. PMID: 18228490.

  16. Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JE, Gould SJ. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol. 2006;172(6):923–35. PMID: 16533950.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Bourkoula E, Mangoni D, Ius T, Pucer A, Isola M, Musiello D, et al. Glioma-associated stem cells: a novel class of tumor-supporting cells able to predict prognosis of human low-grade gliomas. Stem Cells. 2014;32:1239–53. PMID: 24375787.

    CAS  PubMed  Google Scholar 

  18. Lo Cicero A, Schiera G, Proia P, Saladino P, Savettieri G, Di Liegro CM, et al. Oligodendroglioma cells shed microvesicles which contain TRAIL as well as molecular chaperones and induce cell death in astrocytes. Int J Oncol. 2011;39(6):1353–7. PMID: 21842121.

    CAS  PubMed  Google Scholar 

  19. Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS, et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med. 2012;18(12):1835–40. PMID: 23142818.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Neckers L, Ivy SP. Heat shock protein 90. Curr Opin Oncol. 2003;15(6):419–24. PMID: 14624223.

    CAS  PubMed  Google Scholar 

  21. Phuyal S, Hessvik NP, Skotland T, Sandvig K, Llorente A. Regulation of exosome release by glycosphingolipids and flotillins. FEBS J. 2014;281(9):2214–27. PMID: 24605801.

    CAS  PubMed  Google Scholar 

  22. Berditchevski F. Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci. 2002;114(Pt 23):4143–51. PMID: 11739647.

    Google Scholar 

  23. Katzmann DJ, Odorizzi G, Emr SD. Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol. 2002;3(12):893–905. PMID: 12461556.

    CAS  PubMed  Google Scholar 

  24. Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14(7):677–85. PMID: 22660413.

    CAS  PubMed  Google Scholar 

  25. Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DA, et al. Proteomic and immunologic analyses of brain tumor exosomes. FASEB J. 2009;23(5):1541–57. PMID: 19109410.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Epple LM, Griffiths SG, Dechkovskaia AM, Dusto NL, White J, Ouellette RJ, et al. Medulloblastoma exosome proteomics yield functional roles for extracellular vesicles. PLoS ONE. 2012;7(7):e42064. PMID: 22848702.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Redzic JS, Ung TH, Graner MW. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers. Pharmgenomics Pers Med. 2014;7:65–77. PMID: 24634586.

    PubMed Central  PubMed  Google Scholar 

  28. Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J. 2013;280(21):5350–70. PMID: 23777544.

    CAS  PubMed  Google Scholar 

  29. Heimberger AB, Suki D, Yang D, Shi W, Aldape K. The natural history of EGFR and EGFRvIII in glioblastoma patients. J Transl Med. 2005;3:38. PMID: 16236164.

    PubMed Central  PubMed  Google Scholar 

  30. Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringnér M, et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci USA. 2013;110:7312–7. PMID: 23589885.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Balaj L, Lessard R, Dai L, Pomeroy SL, Breakefield XO, Skog J. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2011;2:180. PMID: 21285958.

    PubMed Central  PubMed  Google Scholar 

  32. Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6. PMID: 19011622.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Noerholm M, Balaj L, Limperg T, Salehi A, Zhu LD, Hochberg FH, et al. RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer. 2012;12:22. PMID: 22251860.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Nilsson RJ, Balaj L, Hulleman E, van Rijn S, Pegtel DM, Walraven M, et al. Blood platelets contain tumor-derived RNA biomarkers. Blood. 2009;118(13):3680–3. PMID: 21832279.

    Google Scholar 

  35. Li CC, Eaton SA, Young PE, Lee M, Shuttleworth R, Humphreys DT, et al. Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol. 2013;10(8):1333–44. PMID: 23807490.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Pal A, Srivastava T, Sharma MK, Mehndiratta M, Das P, Sinha S, et al. Aberrant methylation and associated transcriptional mobilization of Alu elements contributes to genomic instability in hypoxia. J Cell Mol Med. 2010;14(11):2646–54. PMID: 19508390.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Godlewski J, Nowicki MO, Bronisz A, Nuovo G, Palatini J, De Lay M, et al. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell. 2010;37:620–32. PMID: 20227367.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J Cell Mol Med. 2009;13(1):39–53. PMID: 19175699.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Akers JC, Ramakrishnan V, Kim R, Skog J, Nakano I, Pingle S, et al. MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS ONE. 2013;8(10):e78115. PMID: 24205116.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Lu C, Shervington A. Chemoresistance in gliomas. Mol Cell Biochem. 2008;312(1–2):71–80. PMID: 18259841.

    CAS  PubMed  Google Scholar 

  41. Persson H, Kvist A, Vallon-Christersson J, Medstrand P, Borg A, Rovira C. The non-coding RNA of the multidrug resistance-linked vault particle encodes multiple regulatory small RNAs. Nat Cell Biol. 2009;11(10):1268–71. PMID: 19749744.

    CAS  PubMed  Google Scholar 

  42. Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA. 2013;110(43):17380–5. PMID: 24101524.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Wade A, Robinson AE, Engler JR, Petritsch C, James CD, Phillips JJ. Proteoglycans and their roles in brain cancer. FEBS J. 2013;280(10):2399–417. PMID: 23281850.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Svensson KJ, Christianson HC, Wittrup A, Bourseau-Guilmain E, Lindqvist E, Svensson LM, et al. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem. 2013;288(24):17713–24. PMID: 23653359.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Atai NA, Balaj L, van Veen H, Breakefield XO, Jarzyna PA, Van Noorden CJ, et al. Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J Neurooncol. 2013;115(3):343–51. PMID: 24002181.

    CAS  PubMed  Google Scholar 

  46. Thayanithy V, Babatunde V, Dickson EL, Wong P, Oh S, Ke X, et al. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells. Exp Cell Res. 2014;323(1):1781–8. PMID: 24468420.

    Google Scholar 

  47. Davis DM, Sowinski S. Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev Mol Cell Biol. 2008;9(6):431–6. PMID: 18431401.

    CAS  PubMed  Google Scholar 

  48. Fang Y, Wu N, Gan X, Yan W, Morrell JC, Gould SJ. Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol. 2007;5(6):e158. PMID: 17550307.

    PubMed Central  PubMed  Google Scholar 

  49. Jia S, Zocco D, Samuels ML, Chou MF, Chammas R, Skog J, et al. Emerging technologies in extracellular vesicle-based molecular diagnostics. Expert Rev Mol Diagn. 2014;14(3):307–21. PMID: 24575799.

    CAS  PubMed  Google Scholar 

  50. Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170(5):1445–53. PMID: 17456751.

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Paul I, Bhattacharya S, Chatterjee A, Ghosh MK. Current understanding on EGFR and Wnt/β-catenin signaling in glioma and their possible crosstalk. Genes Cancer. 2013;4(11–12):427–46. PMID: 24386505.

    PubMed Central  PubMed  Google Scholar 

  52. Frederick L, Wang XY, Eley G, James CD. Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res. 2000;60(5):1383–7. PMID: 10728703.

    CAS  PubMed  Google Scholar 

  53. Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin CH, Westermark B, et al. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res. 1992;52(11):3213–9. PMID: 1317261.

    CAS  PubMed  Google Scholar 

  54. Nazarenko I, Hede SM, He X, Hedrén A, Thompson J, Lindström MS, et al. PDGF and PDGF receptors in glioma. Ups J Med Sci. 2012;117(2):99–112. PMID: 22509804.

    PubMed Central  PubMed  Google Scholar 

  55. Shih AH, Holland EC. Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett. 2006;232(2):139–47. PMID: 16139423.

    CAS  PubMed  Google Scholar 

  56. Hsieh AC, Moasser MM. Targeting HER proteins in cancer therapy and the role of the non-target HER3. Br J Cancer. 2007;97(4):453–7. PMID: 17667926.

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007;26(45):6469–87. PMID: 17471238.

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65(14):6029–33. PMID: 16024602.

    CAS  PubMed  Google Scholar 

  59. Chen Y, Liu W, Chao T, Zhang Y, Yan X, Gong Y, et al. MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett. 2008;272:197–205. PMID: 19013014.

    CAS  PubMed  Google Scholar 

  60. Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 2008;68(19):8164–72. PMID: 18829576.

    CAS  PubMed  Google Scholar 

  61. Buscaglia LE, Li Y. Apoptosis and the target genes of microRNA-21. Chin J Cancer. 2011;30(6):371–80. PMID: 21627859.

    PubMed Central  PubMed  Google Scholar 

  62. Mongiardi MP. Angiogenesis and hypoxia in glioblastoma: a focus on cancer stem cells. CNS Neurol Disord Drug Targets. 2012;11(7):878–83. PMID: 23131159.

    CAS  PubMed  Google Scholar 

  63. Verginelli F, Perin A, Dali R, Fung KH, Lo R, Longatti P, et al. Transcription factors FOXG1 and Groucho/TLE promote glioblastoma growth. Nat Commun. 2013;4:2956. PMID: 24356439.

    PubMed Central  PubMed  Google Scholar 

  64. Mossink MH, van Zon A, Scheper RJ, Sonneveld P, Wiemer EA. Vaults: a ribonucleoprotein particle involved in drug resistance? Oncogene. 2003;22(47):7458–67. PMID: 14576851.

    CAS  PubMed  Google Scholar 

  65. Nie L, Zhao Y, Wu W, Yang YZ, Wang HC, Sun XH, et al. Notch-induced Asb2 expression promotes protein ubiquitination by forming non-canonical E3 ligase complexes. Cell Res. 2011;21(5):754–69. PMID: 21119685.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Saidi A, Hagedorn M, Allain N, Verpelli C, Sala C, Bello L, et al. Combined targeting of interleukin-6 and vascular endothelial growth factor potently inhibits glioma growth and invasiveness. Int J Cancer. 2009;125(5):1054–64. PMID: 19431143.

    CAS  PubMed  Google Scholar 

  67. Samaras V, Piperi C, Levidou G, Zisakis A, Kavantzas N, Themistocleous MS, et al. Analysis of interleukin (IL)-8 expression in human astrocytomas: associations with IL-6, cyclooxygenase-2, vascular endothelial growth factor, and microvessel morphometry. Hum Immunol. 2009;70(6):391–7. PMID: 19332096.

    CAS  PubMed  Google Scholar 

  68. Cuevas P, Carceller F, Angulo J, González-Corrochano R, Cuevas-Bourdier A, Giménez-Gallego G, et al. Antiglioma effects of a new, low molecular mass, inhibitor of fibroblast growth factor. Neurosci Lett. 2011;491(1):1–7. PMID: 21193016.

    CAS  PubMed  Google Scholar 

  69. Jiang L, Lin C, Song L, Wu J, Chen B, Ying Z, et al. MicroRNA-30e* promotes human glioma cell invasiveness in an orthotopic xenotransplantation model by disrupting the NF-κB/IκBα negative feedback loop. J Clin Invest. 2012;122(1):33–47. PMID: 22156201.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Wang J, Wang Y, Wang Y, Ma Y, Lan Y, Yang X, et al. Transforming growth factor β-regulated microRNA-29a promotes angiogenesis through targeting the phosphatase and tensin homolog in endothelium. J Biol Chem. 2012;288(15):10418–26. PMID: 23426367.

    Google Scholar 

  71. Yang C, Wang C, Chen X, Chen S, Zhang Y, Zhi F, et al. Identification of seven serum microRNAs from a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for malignant astrocytomas. Int J Cancer. 2013;132(1):116–27. PMID: 22674182.

    CAS  PubMed  Google Scholar 

  72. Günther W, Skaftnesmo KO, Arnold H, Terzis AJ. Molecular approaches to brain tumour invasion. Acta Neurochir (Wien). 2003;145(12):1029–36. PMID: 14663559.

    Google Scholar 

  73. Arscott WT, Tandle AT, Zhao S, Shabason JE, Gordon IK, Schlaff CD, et al. Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Transl Oncol. 2013;6(6):638–48. PMID: 24466366.

    PubMed Central  PubMed  Google Scholar 

  74. Kiefel H, Bondong S, Hazin J, Ridinger J, Schirmer U, Riedle S, et al. L1CAM: a major driver for tumor cell invasion and motility. Cell Adh Migr. 2012;6(4):374–84. PMID: 22796939.

    PubMed Central  PubMed  Google Scholar 

  75. Yang M, Adla S, Temburni MK, Patel VP, Lagow EL, Brady OA, et al. Stimulation of glioma cell motility by expression, proteolysis, and release of the L1 neural cell recognition molecule. Cancer Cell Int. 2009;9:27. PMID: 19874583.

    PubMed Central  PubMed  Google Scholar 

  76. Yang M, Li Y, Chilukuri K, Brady OA, Boulos MI, Kappes JC, et al. L1 stimulation of human glioma cell motility correlates with FAK activation. J Neurooncol. 2011;105(1):27–44. PMID: 21373966.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Gast D, Riedle S, Kiefel H, Müerköster SS, Schäfer H, Schäfer MK, et al. The RGD integrin binding site in human L1-CAM is important for nuclear signaling. Exp Cell Res. 2008;314(13):2411–8. PMID: 18555990.

    CAS  PubMed  Google Scholar 

  78. Mohanan V, Temburni MK, Kappes JC, Galileo DS. L1CAM stimulates glioma cell motility and proliferation through the fibroblast growth factor receptor. Clin Exp Metastasis. 2013;30(4):507–20. PMID: 23212305.

    CAS  PubMed  Google Scholar 

  79. Kiefel H, Bondong S, Pfeifer M, Schirmer U, Erbe-Hoffmann N, Schäfer H, et al. EMT-associated up-regulation of L1CAM provides insights into L1CAM-mediated integrin signalling and NF-κB activation. Carcinogenesis. 2012;33(10):1919–29. PMID: 22764136.

    CAS  PubMed  Google Scholar 

  80. Svensson KJ, Kucharzewska P, Christianson HC, Sköld S, Löfstedt T, Johansson MC, et al. Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proc Natl Acad Sci USA. 2011;108(32):13147–52. PMID: 21788507.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Wang H, Shen W, Huang H, Huang H, Hu L, Ramdas L, et al. Insulin-like growth factor binding protein 2 enhances glioblastoma invasion by activating invasion-enhancing genes. Cancer Res. 2003;63(15):4315–21. PMID: 12907597.

    CAS  PubMed  Google Scholar 

  82. Hsieh D, Hsieh A, Stea B, Ellsworth R. IGFBP2 promotes glioma tumor stem cell expansion and survival. Biochem Biophys Res Commun. 2010;397(2):367–72. PMID: 20515648.

    CAS  PubMed  Google Scholar 

  83. Chen CC, Lau LF. Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol. 2009;41(4):771–83. PMID: 18775791.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Edwards LA, Woolard K, Son MJ, Li A, Lee J, Ene C, et al. Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion. J Natl Cancer Inst. 2011;103(15):1162–78. PMID: 21771732.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Wooten MW, Vandenplas ML, Seibenhener ML, Geetha T, Diaz-Meco MT. Nerve growth factor stimulates multisite tyrosine phosphorylation and activation of the atypical protein kinase C’s via a src kinase pathway. Mol Cell Biol. 2001;21(24):8414–27. PMID: 11713277.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Renshaw MW, Price LS, Schwartz MA. Focal adhesion kinase mediates the integrin signaling requirement for growth factor activation of MAP kinase. J Cell Biol. 2001;147(3):611–8. PMID: 10545504.

    Google Scholar 

  87. Wang M, Wang T, Liu S, Yoshida D, Teramoto A. The expression of matrix metalloproteinase-2 and -9 in human gliomas of different pathological grades. Brain Tumor Pathol. 2003;20(2):65–72. PMID: 14756443.

    PubMed  Google Scholar 

  88. Nakada M, Okada Y, Yamashita J. The role of matrix metalloproteinases in glioma invasion. Front Biosci. 2003;8:e261–9. PMID: 12456313.

    CAS  PubMed  Google Scholar 

  89. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM, et al. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science. 1998;280(5369):1614–7. PMID: 9616126.

    CAS  PubMed  Google Scholar 

  90. Endersby R, Baker SJ. PTEN signaling in brain: neuropathology and tumorigenesis. Oncogene. 2008;27(41):5416–30. PMID: 18794877.

    CAS  PubMed  Google Scholar 

  91. Koul D. PTEN signaling pathways in glioblastoma. Cancer Biol Ther. 2008;7(9):1321–5. PMID: 18836294.

    CAS  PubMed  Google Scholar 

  92. D’Agostino S, Salamone M, Di Liegro I, Vittorelli ML. Membrane vesicles shed by oligodendroglioma cells induce neuronal apoptosis. Int J Oncol. 2006;29(5):1075–85. PMID: 17016637.

    PubMed  Google Scholar 

  93. Declèves X, Amiel A, Delattre JY, Scherrmann JM. Role of ABC transporters in the chemoresistance of human gliomas. Curr Cancer Drug Targets. 2006;6(5):433–45. PMID: 16918310.

    PubMed  Google Scholar 

  94. Aronica E, Gorter JA, van Vliet EA, Spliet WG, van Veelen CW, van Rijen PC, et al. Overexpression of the human major vault protein in gangliogliomas. Epilepsia. 2003;44(9):1166–75. PMID: 12919388.

    CAS  PubMed  Google Scholar 

  95. Soichi O, Masanori N, Hideo T, Kazunori A, Nobuya I, Jun-ichi K, et al. Clinical significance of ABCA2 a possible molecular marker for oligodendrogliomas. Neurosurgery. 2007;60(4):707–14. PMID: 17415208.

    PubMed  Google Scholar 

  96. Tanaka H, Tsukihara T. Structural studies of large nucleoprotein particles, vaults. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(8):416–33. PMID: 23060231.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Berger W, Steiner E, Grusch M, Elbling L, Micksche M. Vaults and the major vault protein: novel roles in signal pathway regulation and immunity. Cell Mol Life Sci. 2009;66(1):43–61. PMID: 18759128.

    CAS  PubMed  Google Scholar 

  98. Chistiakov DA, Chekhonin VP. Contribution of microRNAs to radio- and chemoresistance of brain tumors and their therapeutic potential. Eur J Pharmacol. 2012;684(1–3):8–18. PMID: 22484336.

    CAS  PubMed  Google Scholar 

  99. Steiner E, Holzmann K, Elbling L, Micksche M, Berger W. Cellular functions of vaults and their involvement in multidrug resistance. Curr Drug Targets. 2006;7(8):923–34. PMID: 16918321.

    CAS  PubMed  Google Scholar 

  100. Huang FF, Zhang L, Wu DS, Yuan XY1, Chen FP1, Zeng H, et al. PTEN regulates BCRP/ABCG2 and the side population through the PI3K/Akt pathway in chronic myeloid leukemia. PLoS ONE. 2014;9(3):e88298. PMID: 24603487.

    PubMed Central  PubMed  Google Scholar 

  101. Zhu H, Wu H, Liu X, Evans BR, Medina DJ, Liu CG, et al. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol. 2008;76(5):582–8. PMID: 18619946.

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Li Z, Hu S, Wang J, Cai J, Xiao L, Yu L, et al. MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol. 2010;119(1):125–30. PMID: 20624637.

    CAS  PubMed  Google Scholar 

  103. Qiu B, Zhang D, Wang C, Tao J, Tie X, Qiao Y, et al. IL-10 and TGF-β2 are overexpressed in tumor spheres cultured from human gliomas. Mol Biol Rep. 2011;38(5):3585–91. PMID: 21088899.

    CAS  PubMed  Google Scholar 

  104. Wainwright DA, Balyasnikova IV, Chang AL, Ahmed AU, Moon KS, Auffinger B, et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res. 2012;18(22):6110–21. PMID: 22932670.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Jordan JT, Sun W, Hussain SF, DeAngulo G, Prabhu SS, Heimberger AB, et al. Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol Immunother. 2008;57(1):123–31. PMID: 17522861.

    CAS  PubMed  Google Scholar 

  106. Ooi YC, Tran P, Ung N, Thill K, Trang A, Fong BM, et al. The role of regulatory T-cells in glioma immunology. Clin Neurol Neurosurg. 2014;119C:125–32. PMID: 24582432.

    Google Scholar 

  107. Rolle CE, Sengupta S, Lesniak MS. Mechanisms of immune evasion by gliomas. Adv Exp Med Biol. 2012;746:53–76. PMID: 22639159.

    CAS  PubMed  Google Scholar 

  108. Zagzag D, Salnikow K, Chiriboga L, Yee H, Lan L, Ali MA, et al. Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain. Lab Invest. 2005;85(3):328–41. PMID: 15716863.

    CAS  PubMed  Google Scholar 

  109. Liu ZM, Wang YB, Yuan XH. Exosomes from murine-derived GL26 cells promote glioblastoma tumor growth by reducing number and function of CD8 + T cells. Asian Pac J Cancer Prev. 2013;14(1):309–14. PMID: 23534743.

    PubMed  Google Scholar 

  110. Krejsgaard T, Vetter-Kauczok CS, Woetmann A, Kneitz H, Eriksen KW, Lovato P, et al. Ectopic expression of B-lymphoid kinase in cutaneous T-cell lymphoma. Blood. 2009;113(23):5896–904. PMID: 19351960.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Malek SN, Dordai DI, Reim J, Dintzis H, Desiderio S. Malignant transformation of early lymphoid progenitors in mice expressing an activated Blk tyrosine kinase. Proc Natl Acad Sci USA. 1998;95(13):7351–6. PMID: 9636152.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Saharinen J, Keski-Oja J. Specific sequence motif of 8-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta. Mol Biol Cell. 2000;11(8):2691–704. PMID: 10930463.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Kantola AK, Keski-Oja J, Koli K. Fibronectin and heparin binding domains of latent TGF-beta binding protein (LTBP)-4 mediate matrix targeting and cell adhesion. Exp Cell Res. 2008;314(13):2488–500. PMID: 18585707.

    CAS  PubMed  Google Scholar 

  114. Koli K, Wempe F, Sterner-Kock A, Kantola A, Komor M, Hofmann WK, et al. Disruption of LTBP-4 function reduces TGF-beta activation and enhances BMP-4 signaling in the lung. J Cell Biol. 2004;167(1):123–33. PMID: 15466481.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Kretschmer C, Conradi A, Kemmner W, Sterner-Kock A. Latent transforming growth factor binding protein 4 (LTBP4) is downregulated in mouse and human DCIS and mammary carcinomas. Cell Oncol (Dordr). 2011;34(5):419–34. PMID: 21468687.

    CAS  Google Scholar 

  116. Bultmann I, Conradi A, Kretschmer C, Sterner-Kock A. Latent transforming growth factor β-binding protein 4 is downregulated in esophageal cancer via promoter methylation. PLoS ONE. 2013;8(5):e65614. PMID: 23741501.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Taylor DD, Zacharias W, Gercel-Taylor C. Exosome isolation for proteomic analyses and RNA profiling. Methods Mol Biol. 2011;728:235–46. PMID: 21468952.

    CAS  PubMed  Google Scholar 

  118. Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82(9):1024–32. PMID: 22785172.

    CAS  PubMed  Google Scholar 

  119. Momen-Heravi F, Balaj L, Alian S, Trachtenberg AJ, Hochberg FH, Skog J, et al. Impact of biofluid viscosity on size and sedimentation efficiency of the isolated microvesicles. Front Physiol. 2012;3:162. PMID: 22661955.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Lopez-Gines C, Cerda-Nicolas M, Gil-Benso R, Pellin A, Lopez-Guerrero JA, Callaghan R, et al. Association of chromosome 7, chromosome 10 and EGFR gene amplification in glioblastoma multiforme. Clin Neuropathol. 2005;24:209–18. PMID: 16167544.

    CAS  PubMed  Google Scholar 

  121. Bieńkowski M, Piaskowski S, Stoczyńska-Fidelus E, Szybka M, Banaszczyk M, Witusik-Perkowska M, et al. Screening for EGFR amplifications with a novel method and their significance for the outcome of glioblastoma patients. PLoS ONE. 2013;8(6):e65444. PMID: 23762372.

    PubMed Central  PubMed  Google Scholar 

  122. Sauter G, Maeda T, Waldman FM, Davis RL, Feuerstein BG. Patterns of epidermal growth factor receptor amplification in malignant gliomas. Am J Pathol. 1996;148(4):1047–53. PMID: 8644846.

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Wang G, Sai K, Gong F, Yang Q, Chen F, Lin J. Mutation of isocitrate dehydrogenase 1 induces glioma cell proliferation via nuclear factor-κB activation in a hypoxia-inducible factor 1α-dependent manner. Mol Med Rep. 2014;9:1799–805. PMID: 24626950.

    CAS  PubMed  Google Scholar 

  124. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44. PMID: 19935646.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Duncan CG, Barwick BG, Jin G, Rago C, Kapoor-Vazirani P, Powell DR, et al. A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome Res. 2012;22(12):2339–55. PMID: 22899282.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Ichimura K. Molecular pathogenesis of IDH mutations in gliomas. Brain Tumor Pathol. 2012;29(3):131–9. PMID: 22399191.

    CAS  PubMed  Google Scholar 

  127. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110. PMID: 20129251.

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Chen WW, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK, Maguire CA, et al. BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids. 2013;2:e109. PMID: 23881452.

    PubMed Central  PubMed  Google Scholar 

  129. Forseen SE, Potti A, Koka V, Koch M, Fraiman G, Levitt R. Identification and relationship of HER-2/neu overexpression to short-term mortality in primary malignant brain tumors. Anticancer Res. 2002;22:1599–602. PMID: 12168843.

    CAS  PubMed  Google Scholar 

  130. Belgrader P, Tanner SC, Regan JF, Koehler R, Hindson BJ, Brown AS. Droplet digital PCR measurement of HER2 copy number alteration in formalin-fixed paraffin-embedded breast carcinoma tissue. Clin Chem. 2013;59(6):991–4. PMID: 23358413.

    CAS  PubMed  Google Scholar 

  131. Wang J, Yi X, Tang H, Han H, Wu M, Zhou F. Direct quantification of microRNA at low picomolar level in sera of glioma patients using a competitive hybridization followed by amplified voltammetric detection. Anal Chem. 2012;84(15):6400–6. PMID: 22788545.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Wang Q, Li P, Li A, Jiang W, Wang H, Wang J, et al. Plasma specific miRNAs as predictive biomarkers for diagnosis and prognosis of glioma. J Exp Clin Cancer Res. 2013;31:97. PMID: 23174013.

    Google Scholar 

  133. Teplyuk NM, Mollenhauer B, Gabriely G, Giese A, Kim E, Smolsky M, et al. MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro Oncol. 2012;14:689–700. PMID: 22492962.

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Koshkin PA, Chistiakov DA, Nikitin AG, Konovalov AN, Potapov AA, Usachev DY, et al. Analysis of expression of microRNAs and genes involved in the control of key signaling mechanisms that support or inhibit development of brain tumors of different grades. Clin Chim Acta. 2014;430:55–62. PMID: 24412320.

    CAS  PubMed  Google Scholar 

  135. Manterola L, Guruceaga E, Gállego Pérez-Larraya J, González-Huarriz M, Jauregui P, Tejada S, et al. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro Oncol. 2014;16:520–7. PMID: 24435880.

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Bronisz A, Godlewski J, Wallace JA, Merchant AS, Nowicki MO, Mathsyaraja H, et al. Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol. 2011;14(2):159–67. PMID: 22179046.

    PubMed Central  PubMed  Google Scholar 

  137. Yang L, Carbone DP. Tumor-host immune interactions and dendritic cell dysfunction. Adv Cancer Res. 2004;92:13–27. PMID: 15530555.

    CAS  PubMed  Google Scholar 

  138. Kim W, Liau LM. Dendritic cell vaccines for brain tumors. Neurosurg Clin N Am. 2010;21(1):139–57. PMID: 19944973.

    PubMed Central  PubMed  Google Scholar 

  139. Bu N, Wu H, Sun B, Zhang G, Zhan S, Zhang R, et al. Exosome-loaded dendritic cells elicit tumor-specific CD8+ cytotoxic T cells in patients with glioma. J Neurooncol. 2011;104(3):659–67. PMID: 21336773.

    CAS  PubMed  Google Scholar 

  140. André F, Chaput N, Schartz NE, Flament C, Aubert N, Bernard J, et al. Exosomes as potent cell-free peptide-based vaccine I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol. 2004;172(4):2126–36. PMID: 14764678.

    PubMed  Google Scholar 

  141. Hu YL, Fu YH, Tabata Y, Gao JQ. Mesenchymal stem cells: a promising targeted-delivery vehicle in cancer gene therapy. J Control Release. 2010;147(2):154–62. PMID: 20493219.

    CAS  PubMed  Google Scholar 

  142. Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P, et al. Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol Ther Nucleic Acids. 2013;2:e126. PMID: 24084846.

    PubMed Central  PubMed  Google Scholar 

  143. Nduom EK, Yang C, Merrill MJ, Zhuang Z, Lonser RR. Characterization of the blood–brain barrier of metastatic and primary malignant neoplasms. J Neurosurg. 2013;119(2):427–33. PMID: 23621605.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by intramural funding from the Pirogov Russian State Medical University.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitry A. Chistiakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chistiakov, D.A., Chekhonin, V.P. Extracellular vesicles shed by glioma cells: pathogenic role and clinical value. Tumor Biol. 35, 8425–8438 (2014). https://doi.org/10.1007/s13277-014-2262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2262-9

Keywords

Navigation