Skip to main content

Advertisement

Log in

Lack of association between interferon gamma +874 T/A polymorphism and cancer risk: an updated meta-analysis

  • Research Article
  • Published:
Tumor Biology

Abstract

Interferon gamma (IFN-γ) is a potent proinflammatory cytokine which plays a pivotal role in the antiviral, antiproliferative, and antitumor activities. A T-to-A transition at the position +874 of human IFN-γ gene (IFNG) has been reported to influence the secretion of IFN-γ and affect cancer susceptibility. However, results from published studies on the association between IFNG +874 T/A polymorphism and cancer risk are inconclusive or even controversial. In order to derive a more precise estimation of the association, a meta-analysis of 38 eligible studies including 5,630 cases and 6,096 controls was conducted with odds ratio (OR) and its corresponding 95 % confidence interval (95 % CI). Overall, no significant association was detected in allelic model (A allele vs. T allele—OR = 0.96, 95 % CI, 0.86–1.08), homozygote comparison (AA vs. TT—OR = 0.97, 95 % CI, 0.79–1.21), heterozygote comparison (AT vs. TT—OR = 1.03, 95 % CI, 0.87–1.23), dominant model (AA + AT vs. TT—OR = 1.00, 95 % CI, 0.87–1.15), nor recessive model (AA vs. AT + TT—OR = 0.93, 95 % CI, 0.78–1.12). Further subgroup analyses based on ethnicity, cancer types, and Hardy–Weinberg equilibrium status failed to demonstrate any significant relationship except in African population under recessive model (AA vs. AT + TT—OR = 0.68, 95 % CI, 0.47–0.97). In conclusion, the current meta-analysis suggested that IFNG +874 T/A polymorphism may not contribute to cancer susceptibility, and further well-designed studies with large sample size are warranted to validate our conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.

    Article  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  3. Jin P, Panelli MC, Marincola FM, Wang E. Cytokine polymorphism and its possible impact on cancer. Immunol Res. 2004;30(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  4. Howell WM, Rose-Zerilli MJ. Cytokine gene polymorphisms, cancer susceptibility, and prognosis. J Nutr. 2007;137(1 Suppl):194S–9S.

    CAS  PubMed  Google Scholar 

  5. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. 2004;75(2):163–89.

    Article  CAS  PubMed  Google Scholar 

  6. Billiau A, Matthys P. Interferon-gamma: a historical perspective. Cytokine Growth Factor Rev. 2009;20(2):97–113.

    Article  CAS  PubMed  Google Scholar 

  7. Schoenborn JR, Wilson CB. Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol. 2007;96:41–101.

    Article  CAS  PubMed  Google Scholar 

  8. Zaidi MR, Merlino G. The two faces of interferon-gamma in cancer. Clin Cancer Res. 2011;17(19):6118–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bekisz J, Sato Y, Johnson C, Husain SR, Puri RK, Zoon KC. Immunomodulatory effects of interferons in malignancies. J Interferon Cytokine Res. 2013;33(4):154–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Pravica V, Perrey C, Stevens A, Lee JH, Hutchinson IV. A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production. Hum Immunol. 2000;61(9):863–6.

    Article  CAS  PubMed  Google Scholar 

  11. Dmitrienko S, Hoar DI, Balshaw R, Keown PA. Immune response gene polymorphisms in renal transplant recipients. Transplantation. 2005;80(12):1773–82.

    Article  PubMed  Google Scholar 

  12. Rossouw M, Nel HJ, Cooke GS, van Helden PD, Hoal EG. Association between tuberculosis and a polymorphic NFkappaB binding site in the interferon gamma gene. Lancet. 2003;361(9372):1871–2.

    Article  CAS  PubMed  Google Scholar 

  13. Skerrett DL, Moore EM, Bernstein DS, Vahdat L. Cytokine genotype polymorphisms in breast carcinoma: associations of TGF-beta1 with relapse. Cancer Invest. 2005;23(3):208–14.

    Article  CAS  PubMed  Google Scholar 

  14. Kamali-Sarvestani E, Merat A, Talei AR. Polymorphism in the genes of alpha and beta tumor necrosis factors (TNF-alpha and TNF-beta) and gamma interferon (IFN-gamma) among Iranian women with breast cancer. Cancer Lett. 2005;223(1):113–9.

    Article  CAS  PubMed  Google Scholar 

  15. Scola L, Vaglica M, Crivello A, Palmeri L, Forte GI, Macaluso MC, et al. Cytokine gene polymorphisms and breast cancer susceptibility. Ann N Y Acad Sci. 2006;1089:104–9.

    Article  CAS  PubMed  Google Scholar 

  16. Gonullu G, Basturk B, Evrensel T, Oral B, Gozkaman A, Manavoglu O. Association of breast cancer and cytokine gene polymorphism in Turkish women. Saudi Med J. 2007;28(11):1728–33.

    PubMed  Google Scholar 

  17. Karakus N, Kara N, Ulusoy AN, Ozaslan C, Bek Y. Tumor necrosis factor alpha and beta and interferon gamma gene polymorphisms in Turkish breast cancer patients. DNA Cell Biol. 2011;30(6):371–7.

    Article  CAS  PubMed  Google Scholar 

  18. Wu G, Zhang J, Lu P. Association of single nucleotide polymorphism of interferon-gamma gene +874 site and breast cancer. Zhong Liu Fang Zhi Za Zhi. 2008;35(9):651–70.

    CAS  Google Scholar 

  19. Govan VA, Carrara HR, Sachs JA, Hoffman M, Stanczuk GA, Williamson AL. Ethnic differences in allelic distribution of IFN-g in South African women but no link with cervical cancer. J Carcinog. 2003;2(1):3.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Guzman VB, Yambartsev A, Goncalves-Primo A, Silva ID, Carvalho CR, Ribalta JC, et al. New approach reveals CD28 and IFNG gene interaction in the susceptibility to cervical cancer. Hum Mol Genet. 2008;17(12):1838–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Gangwar R, Pandey S, Mittal RD. Association of interferon-gamma +874A polymorphism with the risk of developing cervical cancer in north-Indian population. BJOG. 2009;116(12):1671–7.

    Article  CAS  PubMed  Google Scholar 

  22. Ivansson EL, Juko-Pecirep I, Gyllensten UB. Interaction of immunological genes on chromosome 2q33 and IFNG in susceptibility to cervical cancer. Gynecol Oncol. 2010;116(3):544–8.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Q, Zhang C, Walayat S, Chen HW, Wang Y. Association between cytokine gene polymorphisms and cervical cancer in a Chinese population. Eur J Obstet Gynecol Reprod Biol. 2011;158(2):330–3.

    Article  CAS  PubMed  Google Scholar 

  24. do Carmo Vasconcelos de Carvalho V, de Macedo JL, de Lima CA, da Conceicao Gomes de Lima M, de Andrade Heraclio S, Amorim M, et al. IFN-gamma and IL-12B polymorphisms in women with cervical intraepithellial neoplasia caused by human papillomavirus. Mol Biol Rep. 2012;39(7):7627–34.

    Article  PubMed  Google Scholar 

  25. Kordi Tamandani MK, Sobti RC, Shekari M, Mukesh M, Suri V. Expression and polimorphism of IFN-gamma gene in patients with cervical cancer. Exp Oncol. 2008;30(3):224–9.

    CAS  PubMed  Google Scholar 

  26. Wu G, Zhang J, Zuo W. Association between single nucleotide polymorphism of interferon-gamma gene +874 site and susceptibility to ovarian cancer. Journal of Jilin University Medicine Edition. 2009;35(3):507–10.

    CAS  Google Scholar 

  27. Amirzargar AA, Bagheri M, Ghavamzadeh A, Alimoghadam K, Khosravi F, Rezaei N, et al. Cytokine gene polymorphism in Iranian patients with chronic myelogenous leukaemia. Int J Immunogenet. 2005;32(3):167–71.

    Article  CAS  PubMed  Google Scholar 

  28. Nearman ZP, Wlodarski M, Jankowska AM, Howe E, Narvaez Y, Ball E, et al. Immunogenetic factors determining the evolution of T-cell large granular lymphocyte leukaemia and associated cytopenias. Br J Haematol. 2007;136(2):237–48.

    Article  CAS  PubMed  Google Scholar 

  29. Urbanowicz I, Mazur G, Stacherzak-Pawlik J, Bogunia-Kubik K, Wrobel T, Wozniak M, et al. IFN gamma gene polymorphism may contribute to the susceptibility to CLL. Pathol Oncol Res. 2010;16(2):213–6.

    Article  CAS  PubMed  Google Scholar 

  30. Basturk B, Evke E, Tunali A, Karakus S. Interleukin-10 and interferon-gamma cytokine gene polymorphisms may be risk factors for chronic myelogenous leukemia. Turkish Journal of Haematology. 2005;22(4):191–6.

    CAS  Google Scholar 

  31. Basturk B, Evke E, Karakus S, Tunali A. Potential risk factor of interleukin-10 gene polymorphism in acute myelogenous leukemia. UHOD-Uluslararasi Hematoloji-Onkoloji Dergisi. 2005;15(2):57–62.

    CAS  Google Scholar 

  32. Li J, Cao F, Tang H, Liu X, Zhou J. Study on plasma IFN-gamma expression levels and IFN-gamma polymorphism in patients with acute promyeiocyti leukemia. Zhong Guo You Sheng Yu Yi Chuan Za Zhi. 2008;16(2):39–40.

    Google Scholar 

  33. Andrie E, Michos A, Kalampoki V, Pourtsidis A, Moschovi M, Polychronopoulou S, et al. Genetic variants in immunoregulatory genes and risk for childhood lymphomas. Eur J Haematol. 2009;83(4):334–42.

    Article  CAS  PubMed  Google Scholar 

  34. Howell WM, Turner SJ, Theaker JM, Bateman AC. Cytokine gene single nucleotide polymorphisms and susceptibility to and prognosis in cutaneous malignant melanoma. Eur J Immunogenet. 2003;30(6):409–14.

    Article  CAS  PubMed  Google Scholar 

  35. Nikolova PN, Pawelec GP, Mihailova SM, Ivanova MI, Myhailova AP, Baltadjieva DN, et al. Association of cytokine gene polymorphisms with malignant melanoma in Caucasian population. Cancer Immunol Immunother. 2007;56(3):371–9.

    Article  CAS  PubMed  Google Scholar 

  36. Rizzato C, Canzian F, Rudnai P, Gurzau E, Stein A, Koppova K, et al. Interaction between functional polymorphic variants in cytokine genes, established risk factors and susceptibility to basal cell carcinoma of skin. Carcinogenesis. 2011;32(12):1849–54.

    Article  CAS  PubMed  Google Scholar 

  37. Basturk B, Yavascaoglu I, Vuruskan H, Goral G, Oktay B, Oral HB. Cytokine gene polymorphisms as potential risk and protective factors in renal cell carcinoma. Cytokine. 2005;30(1):41–5.

    Article  PubMed  Google Scholar 

  38. Omrani M, Bazargani S, Bageri M. Interlukin-10, interferon-(gamma) and tumor necrosis factor-(alpha) genes variation in prostate cancer and benign prostatic hyperplasia. Current Urology. 2008;2(4):175–80.

    Article  CAS  Google Scholar 

  39. Ahirwar DK, Agrahari A, Mandhani A, Mittal RD. Cytokine gene polymorphisms are associated with risk of urinary bladder cancer and recurrence after BCG immunotherapy. Biomarkers. 2009;14(4):213–8.

    Article  CAS  PubMed  Google Scholar 

  40. Nieters A, Yuan JM, Sun CL, Zhang ZQ, Stoehlmacher J, Govindarajan S, et al. Effect of cytokine genotypes on the hepatitis B virus-hepatocellular carcinoma association. Cancer. 2005;103(4):740–8.

    Article  CAS  PubMed  Google Scholar 

  41. Migita K, Miyazoe S, Maeda Y, Daikoku M, Abiru S, Ueki T, et al. Cytokine gene polymorphisms in Japanese patients with hepatitis B virus infection—association between TGF-beta1 polymorphisms and hepatocellular carcinoma. J Hepatol. 2005;42(4):505–10.

    Article  CAS  PubMed  Google Scholar 

  42. Teixeira AC, Mendes Jr CT, Marano LA, Deghaide NH, Secaf M, Elias Jr J, et al. Alleles and genotypes of polymorphisms of IL-18, TNF-alpha and IFN-gamma are associated with a higher risk and severity of hepatocellular carcinoma (HCC) in Brazil. Hum Immunol. 2013;74(8):1024–9.

    Article  CAS  PubMed  Google Scholar 

  43. Talseth BA, Meldrum C, Suchy J, Kurzawski G, Lubinski J, Scott RJ. Lack of association between genetic polymorphisms in cytokine genes and disease expression in patients with hereditary non-polyposis colorectal cancer. Scand J Gastroenterol. 2007;42(5):628–32.

    Article  CAS  PubMed  Google Scholar 

  44. Fei B, Lv H, Chen Y, Yang J. Single nucleotide polymorphism of interferon-gamma gene +874 T/A in colorectal cancer. World Chin J Digestol. 2006;14(20):2022–5.

    CAS  Google Scholar 

  45. Du W, Ye W, Chen M, Li D, Jing X. Association research between polymorphism of IFN-gamma and IL-10, environmental risk factors, and susceptibility to esophageal cancer. Wei Sheng Yan Jiu. 2013;42(5):770–6.

    CAS  PubMed  Google Scholar 

  46. Talar-Wojnarowska R, Gasiorowska A, Smolarz B, Romanowicz-Makowska H, Kulig A, Malecka-Panas E. Tumor necrosis factor alpha and interferon gamma genes polymorphisms and serum levels in pancreatic adenocarcinoma. Neoplasma. 2009;56(1):56–62.

    Article  CAS  PubMed  Google Scholar 

  47. Farhat K, Hassen E, Gabbouj S, Bouaouina N, Chouchane L. Interleukin-10 and interferon-gamma gene polymorphisms in patients with nasopharyngeal carcinoma. Int J Immunogenet. 2008;35(3):197–205.

    Article  CAS  PubMed  Google Scholar 

  48. Tai SH, Wei YS, Wang P, Zhou B, Ran P, Yang ZH, et al. Genetic polymorphisms of interferon-gamma and interleukin-8 in patients with nasopharyngeal carcinoma. Sichuan Da Xue Xue Bao Yi Xue Ban. 2007;38(5):862–5.

    CAS  PubMed  Google Scholar 

  49. Colakogullari M, Ulukaya E, Yilmaztepe Oral A, Aymak F, Basturk B, Ursavas A, et al. The involvement of IL-10, IL-6, IFN-gamma, TNF-alpha and TGF-beta gene polymorphisms among Turkish lung cancer patients. Cell Biochem Funct. 2008;26(3):283–90.

    Article  CAS  PubMed  Google Scholar 

  50. Mi YY, Yu QQ, Xu B, Zhang LF, Min ZC, Hua LX, et al. Interferon gamma +874 T/A polymorphism contributes to cancer susceptibility: a meta-analysis based on 17 case-control studies. Mol Biol Rep. 2011;38(7):4461–7.

    Article  CAS  PubMed  Google Scholar 

  51. Liu F, Li B, Wei YG, Chen X, Ma Y, Yan LN, et al. IFN-gamma +874 A/T polymorphism and cancer risk: an updated analysis based on 32 case-control studies. Cytokine. 2011;56(2):200–7.

    Article  CAS  PubMed  Google Scholar 

  52. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Ge YZ, Wu R, Jia RP, Liu H, Yu P, Zhao Y, et al. Association between interferon gamma +874 T > A polymorphism and acute renal allograft rejection: evidence from published studies. Mol Biol Rep. 2013;40(10):6043–51.

    Article  CAS  PubMed  Google Scholar 

  54. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.

    CAS  PubMed  Google Scholar 

  56. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    Article  CAS  PubMed  Google Scholar 

  57. Wang BS, Liu Z, Xu WX, Sun SL. CYP3A5*3 polymorphism and cancer risk: a meta-analysis and meta-regression. Tumour Biol. 2013;34(4):2357–66.

    Article  CAS  PubMed  Google Scholar 

  58. Thakkinstian A, McElduff P, D’Este C, Duffy D, Attia J. A method for meta-analysis of molecular association studies. Stat Med. 2005;24(9):1291–306.

    Article  PubMed  Google Scholar 

  59. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.

    Article  CAS  PubMed  Google Scholar 

  60. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Slattery ML, Lundgreen A, Bondurant KL, Wolff RK. Interferon-signaling pathway: associations with colon and rectal cancer risk and subsequent survival. Carcinogenesis. 2011;32(11):1660–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by grants from the National Natural Science Foundation of China (81070597 and 81370853), Science and Education Development Program of the Jiangsu Province Health Board (LJ201107), Six Talent Peaks of the Jiangsu Province Health Bureau (2011-WS-093), and Research and Innovation Program for Graduates of Jiangsu Province (CXZZ13_0583).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Peng Jia.

Additional information

Yu-Zheng Ge, Yi-Dan Wang, and Zheng Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, YZ., Wang, YD., Xu, Z. et al. Lack of association between interferon gamma +874 T/A polymorphism and cancer risk: an updated meta-analysis. Tumor Biol. 35, 6405–6414 (2014). https://doi.org/10.1007/s13277-014-1861-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1861-9

Keywords

Navigation