Skip to main content

Advertisement

Log in

7B7: a novel antibody directed against the Ku70/Ku80 heterodimer blocks invasion in pancreatic and lung cancer cells

  • Research Article
  • Published:
Tumor Biology

Abstract

Development of more effective therapeutic strategies for cancers of high unmet need requires the continued discovery of disease-specific protein targets for therapeutic antibody targeting. In order to identify novel proteins associated with cancer cell invasion/metastasis, we present here an alternative to antibody targeting of cell surface proteins with an established role in invasion; our functional antibody screening approach involves the isolation and selection of MAbs that are primarily screened for their ability to inhibit tumour invasion. A clonal population of the Mia PaCa-2, a pancreatic ductal adenocarcinoma (PDAC) cell line, which displays a highly invasive phenotype, was used to generate MAbs with the objective of identifying membrane targets directly involved in cancer invasion. Selected MAb 7B7 can significantly reduce invasion in a dose-responsive manner in Mia PaCa-2 clone 3 and DLKP-M squamous lung carcinoma cells. Using immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis, the target antigen of anti-invasive antibody, 7B7, was determined to be the heterodimeric Ku antigen, Ku70/80, a core protein composed of the Ku70 and Ku80 subunits which is involved in non-homologous end-joining (NHEJ) DNA repair. RNA interference-mediated knockdown of Ku70 and Ku80 resulted in a marked decrease in the invasive capacity of Mia PaCa-2 clone 3 and DLKP-M cells, indicating that Ku70/Ku80 is functionally involved in pancreatic and lung cancer invasion. Immunohistochemical analysis demonstrated Ku70/Ku80 immunoreactivity in 37 PDAC tumours, indicating that this heterodimer is highly expressed in this aggressive cancer type. This study demonstrates that a functional MAb screening approach coupled with immunoprecipitation/proteomic analyses can be successfully applied to identify functional anti-invasive MAbs and potential novel targets for therapeutic antibody targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eckhardt BL, Francis PA, Parker BS, Anderson RL. Strategies for the discovery and development of therapies for metastatic breast cancer. Nat Rev Drug Disc. 2012;11:479–97.

    Article  CAS  Google Scholar 

  2. Weber GF. Why does cancer therapy lack effective anti-metastasis drugs? Cancer Lett. 2013;328:207–11.

    Article  CAS  PubMed  Google Scholar 

  3. Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun. 2012;12:14.

    PubMed Central  PubMed  Google Scholar 

  4. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 2009;157(2):220–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Lambert JM. Drug-conjugated antibodies for the treatment of cancer. Br J Clin Pharmacol. 2013;76(2):248–62. doi:10.1111/bcp.12044.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Reichert JM. Antibodies to watch in 2014. MAbs. 2013 Nov 25;6(1). [Epub ahead of print]

  7. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–87.

    Article  CAS  PubMed  Google Scholar 

  8. Sliwkowski MX, Mellman I. Antibody therapeutics in cancer. Science. 2013;341(6151):1192–8.

    Article  CAS  PubMed  Google Scholar 

  9. Mullard A. Maturing antibody-drug conjugate pipeline hits 30. Nat Rev Drug Discov. 2013;12(5):329–32.

    Article  CAS  PubMed  Google Scholar 

  10. Sievers EL, Senter PD. Antibody-drug conjugates in cancer therapy. Annu Rev Med. 2013;64:15–29.

    Article  CAS  PubMed  Google Scholar 

  11. Roti G, Stegmaier K. Genetic and proteomic approaches to identify cancer drug targets. Br J Cancer. 2012;106(2):254–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Swinney DC, Anthony J. How were new medicines discovered? Nat Rev Drug Discov. 2011;10(7):507–19.

    Article  CAS  PubMed  Google Scholar 

  13. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.

    Article  CAS  PubMed  Google Scholar 

  14. Kinch MS, Kohli M, Goldblatt M, Li WB. Function-first approaches to improve target identification in cancer. Future Oncol. 2009;5(5):617–23.

    Article  CAS  PubMed  Google Scholar 

  15. Frendeus B. Function-first antibody discovery: embracing the unpredictable biology of antibodies. Oncoimmunol. 2013;2(8):e25047.

    Article  Google Scholar 

  16. Rust S, Guillard S, Sachsenmeier K, Hay C, Davidson M, Karlsson A, et al. Combining phenotypic and proteomic approaches to identify membrane targets in a 'triple negative' breast cancer cell type. Mol Cancer. 2013;12:11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Walsh N, Dowling P, O'Donovan N, Henry M, Meleady P, Clynes M. Aldehyde dehydrogenase 1A1 and gelsolin identified as novel invasion-modulating factors in conditioned medium of pancreatic cancer cells. J Proteomics. 2008;71(5):561–71.

    Article  CAS  PubMed  Google Scholar 

  18. McBride S, Meleady P, Baird A, Dinsdale D, Clynes M. Human lung carcinoma cell line DLKP contains 3 distinct subpopulations with different growth and attachment properties. Tumour Biol. 1998;19(2):88–103.

    Article  CAS  PubMed  Google Scholar 

  19. Walsh N, Clynes M, Crown J, O'Donovan N. Alterations in integrin expression modulates invasion of pancreatic cancer cells. J Exp Clin Cancer Res. 2009;28:140.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Albini A. Tumor and endothelial cell invasion of basement membranes. The matrigel chemoinvasion assay as a tool for dissecting molecular mechanisms. Pathol Oncol Res. 1998;4(3):230–41.

    Article  CAS  PubMed  Google Scholar 

  21. Martin A, Clynes M. Acid phosphatase: endpoint for in vitro toxicity tests. In Vitro Cell Dev Biol. 1991;27A(3 Pt 1):183–4.

    Article  CAS  PubMed  Google Scholar 

  22. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2006;1(6):2856–60.

    Article  CAS  PubMed  Google Scholar 

  23. Larkin A, Moran E, Kennedy SM, Clynes M. Monoclonal antibody 5C3 raised against formalin fixed paraffin-embedded invasive breast tumour tissue: characterisation of its reactive antigen via immunoprecipitation and internal sequencing. J Immunol Methods. 2005;303(1–2):53–65.

    Article  CAS  PubMed  Google Scholar 

  24. Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol. 2010;10(5):345–52.

    Article  CAS  PubMed  Google Scholar 

  25. Tuteja N, Tuteja R, Ochem A, Taneja P, Huang NW, Simoncsits A, et al. Human DNA helicase II: a novel DNA unwinding enzyme identified as the Ku autoantigen. EMBO J. 1994;13(20):4991–5001.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Muller C, Paupert J, Monferran S, Salles B. The double life of the Ku protein: facing the DNA breaks and the extracellular environment. Cell Cycle. 2005;4(3):438–41.

    Article  CAS  PubMed  Google Scholar 

  27. Cosaceanu D, Budiu RA, Carapancea M, Castro J, Lewensohn R, Dricu A. Ionizing radiation activates IGF-1R triggering a cytoprotective signaling by interfering with Ku-DNA binding and by modulating Ku86 expression via a p38 kinase-dependent mechanism. Oncogene. 2007;26(17):2423–34.

    Article  CAS  PubMed  Google Scholar 

  28. Jia Q, Li Y, Xu D, Li Z, Zhang Z, Zhang Y, et al. Radiosensitivity of glioma to Gamma Knife treatment enhanced in vitro and in vivo by RNA interfering Ku70 that is mediated by a recombinant adenovirus. J Neurosurg. 2010;113(Suppl):228–35.

    CAS  PubMed  Google Scholar 

  29. SoderlundLeifler K, Queseth S, Fornander T, Askmalm MS. Low expression of Ku70/80, but high expression of DNA-PKcs, predict good response to radiotherapy in early breast cancer. Int J Oncol. 2010;37(6):1547–54.

    Google Scholar 

  30. Hassan MK, Watari H, Christenson L, Bettuzzi S, Sakuragi N. Intracellular clusterin negatively regulates ovarian chemoresistance: compromised expression sensitizes ovarian cancer cells to paclitaxel. Tumour Biol. 2011;32(5):1031–47.

    Article  CAS  PubMed  Google Scholar 

  31. Petera J, Sirak I, Beranek M, Vosmik M, Drastikova M, Paulikova S, et al. Molecular predictive factors of outcome of radiotherapy in cervical cancer. Neoplasma. 2011;58(6):469–75.

    Article  CAS  PubMed  Google Scholar 

  32. Bouchaert P, Guerif S, Debiais C, Irani J, Fromont G. DNA-PKcs expression predicts response to radiotherapy in prostate cancer. Int J Radiat Oncol Biol Phys. 2012;84(5):1179–85.

    Article  CAS  PubMed  Google Scholar 

  33. Groselj B, Kerr M, Kiltie AE. Radiosensitisation of bladder cancer cells by panobinostat is modulated by Ku80 expression. Radiother Oncol. 2013;108(3):429–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ma Q, Li P, Xu M, Yin J, Su Z, Li W, et al. Ku80 is highly expressed in lung adenocarcinoma and promotes cisplatin resistance. J Exp Clin Cancer Res. 2012;31:99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Monferran S, Paupert J, Dauvillier S, Salles B, Muller C. The membrane form of the DNA repair protein Ku interacts at the cell surface with metalloproteinase 9. EMBO J. 2004;23(19):3758–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Persson O, Salford LG, Fransson J, Widegren B, Borrebaeck CA, Holmqvist B. Distribution, cellular localization, and therapeutic potential of the tumor-associated antigen Ku70/80 in glioblastoma multiforme. J Neuro Oncol. 2010;97(2):207–15.

    Article  CAS  Google Scholar 

  37. Fransson J, Borrebaeck CA. The nuclear DNA repair protein Ku70/80 is a tumor-associated antigen displaying rapid receptor mediated endocytosis. Int J Cancer. 2006;119(10):2492–6.

    Article  CAS  PubMed  Google Scholar 

  38. Lagadec C, Romon R, Tastet C, Meignan S, Com E, Page A, et al. Ku86 is important for TrkA overexpression-induced breast cancer cell invasion. Proteomics Clin Appl. 2010;4(6–7):580–90.

    Article  CAS  PubMed  Google Scholar 

  39. Alshareeda AT, Negm OH, Albarakati N, Green AR, Nolan C, Sultana R, et al. Clinicopathological significance of KU70/KU80, a key DNA damage repair protein in breast cancer. Breast Cancer Res Treat. 2013;139(2):301–10.

    Article  CAS  PubMed  Google Scholar 

  40. Li W, Xie C, Yang Z, Chen J, Lu NH. Abnormal DNA-PKcs and Ku 70/80 expression may promote malignant pathological processes in gastric carcinoma. World J Gastroenterol. 2013;19(40):6894–901.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Ferenczi K, Ohtola J, Aubert P, Kessler M, Sugiyama H, Somani AK, et al. Malignant T cells in cutaneous T-cell lymphoma lesions contain decreased levels of the antiapoptotic protein Ku70. Br J Dermatol. 2010;163(3):564–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Pucci S, Mazzarelli P, Sesti F, Boothman DA, Spagnoli LG. Interleukin-6 affects cell death escaping mechanisms acting on Bax-Ku70-Clusterin interactions in human colon cancer progression. Cell Cycle. 2009;8(3):473–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Korabiowska M, Tscherny M, Stachura J, Berger H, Cordon-Cardo C, Brinck U. Differential expression of DNA nonhomologous end-joining proteins Ku70 and Ku80 in melanoma progression. Mod Pathol. 2002;15(4):426–33.

    Article  PubMed  Google Scholar 

  44. Azmi AS, Philip PA, Aboukameel A, Wang Z, Banerjee S, Zafar SF, et al. Reactivation of p53 by novel MDM2 inhibitors: implications for pancreatic cancer therapy. Curr Cancer Drug Targets. 2010;10(3):319–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by Enterprise Ireland, project code TD/2009/0133. The authors wish to acknowledge the technical assistance provided by the RCSI Biomedical Facility, Beaumont Hospital, Dublin 9, Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemarie Larkin.

Additional information

Dermot O’Sullivan and Michael Henry contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 5003 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Sullivan, D., Henry, M., Joyce, H. et al. 7B7: a novel antibody directed against the Ku70/Ku80 heterodimer blocks invasion in pancreatic and lung cancer cells. Tumor Biol. 35, 6983–6997 (2014). https://doi.org/10.1007/s13277-014-1857-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1857-5

Keywords

Navigation