Skip to main content

Advertisement

Log in

CEP55 contributes to human gastric carcinoma by regulating cell proliferation

  • Research Article
  • Published:
Tumor Biology

Abstract

Centrosomal protein 55 (CEP55) is the latest found member in the centrosomal relative protein family, which participates in cell-cycle regulation. CEP55 exists in many kinds of normal tissues and tumour cells such as hepatocellular carcinoma, and is important in carcinogenesis. However, the role of CEP55 in the pathogenesis of gastric cancer (GC) remains unclear. The mRNA levels of CEP55 in GC tissues and GC cell lines were examined by quantitative real-time PCR, and the protein expression of CEP55 in GC tissues was detected by Western blot and immunohistochemistry. The role of CEP55 in regulating the proliferation of GC cell lines was investigated both in vitro and in vivo. CEP55 was strongly upregulated in human GC, indicating that CEP55 contributed to carcinogenesis and progression of GC. Ectopic overexpression of CEP55 enhanced the cell proliferation, colony formation, and tumourigenicity of GC cells, whereas CEP55 knockdown inhibited these effects. We discovered that cell transformation induced by CEP55 was mediated by the AKT signalling pathway. Overexpression of CEP55 enhanced the phosphorylation of AKT and inhibited the activity of p21 WAF1/Cip1. In addition, cellular proliferation was suppressed as a result of cell cycle arrest at the G2/M phase in CEP55-knockdown cells. CEP55 expression was elevated in GC compared with normal control tissues. Credible evidence showed that CEP55 can be a potential therapeutic target in GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. doi:10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917. doi:10.1002/ijc.25516.

    Article  CAS  PubMed  Google Scholar 

  3. Hartgrink HH, Jansen EP, van Grieken NC, van de Velde CJ. Gastric cancer. Lancet. 2009;374(9688):477–90. doi:10.1016/S0140-6736(09)60617-6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pennathur A, Farkas A, Krasinskas AM, Ferson PF, Gooding WE, Gibson MK, et al. Esophagectomy for T1 esophageal cancer: outcomes in 100 patients and implications for endoscopic therapy. Ann Thorac Surg. 2009;87(4):1048–54. doi:10.1016/j.athoracsur.2008.12.060. discussion 54–5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jiang B, Li Z, Zhang W, Wang H, Zhi X, Feng J, et al. miR-874 inhibits cell proliferation, migration and invasion through targeting aquaporin-3 in gastric cancer. J Gastroenterol. 2013. doi:10.1007/s00535-013-0851-9.

    Google Scholar 

  6. Fabbro M, Zhou B-B, Takahashi M, Sarcevic B, Lal P, Graham ME, et al. Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev Cell. 2005;9(4):477–88. doi:10.1016/j.devcel.2005.09.003.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao WM, Seki A, Fang G. Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis. Mol Biol Cell. 2006;17(9):3881–96. doi:10.1091/mbc.E06-01-0015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen CH, Lu PJ, Chen YC, Fu SL, Wu KJ, Tsou AP, et al. FLJ10540-elicited cell transformation is through the activation of PI3-kinase/AKT pathway. Oncogene. 2007;26(29):4272–83. doi:10.1038/sj.onc.1210207.

    Article  CAS  PubMed  Google Scholar 

  9. Martinez-Garay I, Rustom A, Gerdes HH, Kutsche K. The novel centrosomal associated protein CEP55 is present in the spindle midzone and the midbody. Genomics. 2006;87(2):243–53. doi:10.1016/j.ygeno.2005.11.006.

    Article  CAS  PubMed  Google Scholar 

  10. Sakai M, Shimokawa T, Kobayashi T, Matsushima S, Yamada Y, Nakamura Y, et al. Elevated expression of C10orf3 (chromosome 10 open reading frame 3) is involved in the growth of human colon tumor. Oncogene. 2005. doi:10.1038/sj.onc.1209051.

    Google Scholar 

  11. Chen CH, Chien CY, Huang CC, Hwang CF, Chuang HC, Fang FM, et al. Expression of FLJ10540 is correlated with aggressiveness of oral cavity squamous cell carcinoma by stimulating cell migration and invasion through increased FOXM1 and MMP-2 activity. Oncogene. 2009;28(30):2723–37. doi:10.1038/onc.2009.128.

    Article  CAS  PubMed  Google Scholar 

  12. Blagosklonny MV, Chen C-H, Lai J-M, Chou T-Y, Chen C-Y, Su L-J, et al. VEGFA upregulates FLJ10540 and modulates migration and invasion of lung cancer via PI3K/AKT pathway. PLoS ONE. 2009;4(4):e5052. doi:10.1371/journal.pone.0005052.

    Article  Google Scholar 

  13. Chang Y-C, Chen Y-J, Wu C-H, Wu Y-C, Yen T-C, Ouyang P. Characterization of centrosomal proteins Cep55 and pericentrin in intercellular bridges of mouse testes. Journal of Cellular Biochemistry. 2010:n/a-n/a. doi:10.1002/jcb.22517.

  14. Brazil DP, Park J, Hemmings BA. PKB binding proteins. Getting in on the Akt. Cell. 2002;111(3):293–303.

    Article  CAS  PubMed  Google Scholar 

  15. Whiteman EL, Cho H, Birnbaum MJ. Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab. 2002;13(10):444–51.

    Article  CAS  PubMed  Google Scholar 

  16. Liang J, Slingerland JM. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2003;2(4):339–45.

    Article  CAS  PubMed  Google Scholar 

  17. Testa JR, Tsichlis PN. AKT signaling in normal and malignant cells. Oncogene. 2005;24(50):7391–3. doi:10.1038/sj.onc.1209100.

    Article  CAS  PubMed  Google Scholar 

  18. Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24(50):7455–64. doi:10.1038/sj.onc.1209085.

    Article  CAS  PubMed  Google Scholar 

  19. Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9(6):400–14. doi:10.1038/nrc2657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science. 1996;274(5293):1664–72.

    Article  CAS  PubMed  Google Scholar 

  21. Sherr CJ. Cancer cell cycles. Science. 1996;274(5293):1672–7.

    Article  CAS  PubMed  Google Scholar 

  22. Clurman BE, Roberts JM. Cell cycle and cancer. J Natl Cancer Inst. 1995;87(20):1499–501.

    Article  CAS  PubMed  Google Scholar 

  23. Delattre M. The arithmetic of centrosome biogenesis. J Cell Sci. 2004;117(9):1619–30. doi:10.1242/jcs.01128.

    Article  CAS  PubMed  Google Scholar 

  24. Srsen V. Merdes A. Cell Div. 2006;1(1):26. doi:10.1186/1747-1028-1-26.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sankaran S, Parvin JD. Centrosome function in normal and tumor cells. J Cell Biochem. 2006;99(5):1240–50. doi:10.1002/jcb.21003.

    Article  CAS  PubMed  Google Scholar 

  26. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655–7. doi:10.1126/science.296.5573.1655.

    Article  CAS  PubMed  Google Scholar 

  27. Markman B, Atzori F, Perez-Garcia J, Tabernero J, Baselga J. Status of PI3K inhibition and biomarker development in cancer therapeutics. Ann Oncol. 2010;21(4):683–91. doi:10.1093/annonc/mdp347.

    Article  CAS  PubMed  Google Scholar 

  28. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. doi:10.1016/S0092-8674(00)81683-9.

    Article  CAS  PubMed  Google Scholar 

  29. Chen YL, Law PY, Loh HH. Inhibition of akt/protein kinase B signaling by naltrindole in small cell lung cancer cells. Cancer Res. 2004;64(23):8723–30. doi:10.1158/0008-5472.CAN-03-3091.

    Article  CAS  PubMed  Google Scholar 

  30. Xu X, Sakon M, Nagano H, Hiraoka N, Yamamoto H, Hayashi N, et al. Akt2 expression correlates with prognosis of human hepatocellular carcinoma. Oncol Rep. 2004;11(1):25–32.

    CAS  PubMed  Google Scholar 

  31. Nakanishi K, Sakamoto M, Yamasaki S, Todo S, Hirohashi S. Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma. Cancer. 2005;103(2):307–12. doi:10.1002/cncr.20774.

    Article  CAS  PubMed  Google Scholar 

  32. Yohn NL, Bingaman CN, DuMont AL, Yoo LI. Phosphatidylinositol 3′-kinase, mTOR, and glycogen synthase kinase-3β mediated regulation of p21 in human urothelial carcinoma cells. BMC Urol. 2011;11(1):19. doi:10.1186/1471-2490-11-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin HP, Jiang SS, Chuu CP. Caffeic acid phenethyl ester causes p21 induction, Akt signaling reduction, and growth inhibition in PC-3 human prostate cancer cells. PLoS One. 2012;7(2):e31286. doi:10.1371/journal.pone.0031286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mullany LK, Nelsen CJ, Hanse EA, Goggin MM, Anttila CK, Peterson M, et al. Akt-mediated liver growth promotes induction of cyclin E through a novel translational mechanism and a p21-mediated cell cycle arrest. J Biol Chem. 2007;282(29):21244–52. doi:10.1074/jbc.M702110200.

    Article  CAS  PubMed  Google Scholar 

  35. Archer SY, Johnson J, Kim HJ, Ma Q, Mou H, Daesety V, et al. The histone deacetylase inhibitor butyrate downregulates cyclin B1 gene expression via a p21/WAF-1-dependent mechanism in human colon cancer cells. Am J Physiol Gastrointest Liver Physiol. 2005;289(4):G696–703. doi:10.1152/ajpgi.00575.2004.

    CAS  PubMed  Google Scholar 

  36. Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 1998;391(6667):597–601. doi:10.1038/35404.

    Article  CAS  PubMed  Google Scholar 

  37. Alt JR, Gladden AB, Diehl JA. p21(Cip1) promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export. J Biol Chem. 2002;277(10):8517–23. doi:10.1074/jbc.M108867200.

    Article  CAS  PubMed  Google Scholar 

  38. Lin J, Reichner C, Wu X, Levine AJ. Analysis of wild-type and mutant p21WAF-1 gene activities. Mol Cell Biol. 1996;16(4):1786–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakanishi M, Robetorye RS, Adami GR, Pereira-Smith OM, Smith JR. Identification of the active region of the DNA synthesis inhibitory gene p21Sdi1/CIP1/WAF1. EMBO J. 1995;14(3):555–63.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (81272712, 81072031, 81101802), the Program for Development of Innovative Research Team in the First Affiliated Hospital of NJMU, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, JX10231801) and the translational research of early diagnosis and comprehensive treatment in pancreatic cancer (The research Special Fund For public welfare industry of health, 201202007)

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zekuan Xu.

Additional information

Jinqiu Tao and Xiaofei Zhi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, J., Zhi, X., Tian, Y. et al. CEP55 contributes to human gastric carcinoma by regulating cell proliferation. Tumor Biol. 35, 4389–4399 (2014). https://doi.org/10.1007/s13277-013-1578-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1578-1

Keywords

Navigation