Skip to main content

Advertisement

Log in

Clinical significance of S100A2 expression in gastric cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

Gastric carcinoma (GC) is one of the most common malignancies worldwide. To identify the candidate carcinoma-related biomarker in GC, comparative proteome technique was performed in resected GC tissues and matched adjacent non-cancerous gastric tissues (ANGT). As a result, S100A2 was successfully identified to be down-regulated significantly in GC compared with ANGT. Western blot analysis validated decreased expression of S100A2, and its expression level was related with the degree of tumor differentiation and status of lymph node metastasis in GC. Furthermore, immunohistochemistry analysis showed S100A2 down-expression was significantly associated with poor differentiation (P < 0.05), advanced depth of invasion (P < 0.05) and lymph node metastasis (P < 0.05) in GC. Kaplan–Meier curves showed that the relapse-free probability and the overall survival rate were significantly decreased with S100A2 expression decreasing (P < 0.05). Cox regression analysis indicated S100A2 down-expression was a negative independent prognostic biomarker for GC. A supplement of S100A2 protein by S100A2 expression vector significantly decreased the number of invaded cancer cells MGC-803. However, knockdown of S100A2 expression by siRNA interference compromised the invasion ability of MGC-803 cells. Moreover, S100A2 negatively regulated MEK/ERK signaling pathway, and activation of this signaling pathway by S100A2 down-regulation increased in vitro invasion of MGC-803 cells. In conclusion, this study demonstrated the clinical significance of S100A2 expression in GC, and loss of S100A2 expression contributes to GC development and progression. Therefore, the determination of S100A2 expression levels contributes to predict the outcome of GC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brenner H, Rothenbacher D, Arndt V. Epidemiology of stomach cancer. Methods Mol Biol. 2009;472:467–77.

    Article  PubMed  Google Scholar 

  2. Gomceli I, Demiriz B, Tez M. Gastric carcinogenesis. World J Gastroenterol. 2012;18(37):5164–70.

    PubMed Central  PubMed  Google Scholar 

  3. Santamaria-Kisiel L, Rintala-Dempsey AC, Shaw GS. Calcium-dependent and -independent interactions of the S100 protein family. Biochem J. 2006;396(2):201–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Heizmann CW, Fritz G, Schafer BW. S100 proteins: structure, functions and pathology. Front Biosci. 2002;7:d1356–68.

    Article  CAS  PubMed  Google Scholar 

  5. Donato R et al. Functions of s100 proteins. Curr Mol Med. 2013;13(1):24–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Salama I et al. A review of the S100 proteins in cancer. Eur J Surg Oncol. 2008;34(4):357–64.

    Article  CAS  PubMed  Google Scholar 

  7. Deshpande R et al. Biochemical characterization of S100A2 in human keratinocytes: subcellular localization, dimerization, and oxidative cross-linking. J Invest Dermatol. 2000;115(3):477–85.

    Article  CAS  PubMed  Google Scholar 

  8. Liu D et al. Expression of calcium-binding protein S100A2 in breast lesions. Br J Cancer. 2000;83(11):1473–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Almadori G et al. Diminished expression of S100A2, a putative tumour suppressor, is an independent predictive factor of neck node relapse in laryngeal squamous cell carcinoma. J Otolaryngol Head Neck Surg. 2009;38(1):16–22.

    PubMed  Google Scholar 

  10. Feng G et al. Diminished expression of S100A2, a putative tumor suppressor, at early stage of human lung carcinogenesis. Cancer Res. 2001;61(21):7999–8004.

    CAS  PubMed  Google Scholar 

  11. Nagy N et al. S100A2, a putative tumor suppressor gene, regulates in vitro squamous cell carcinoma migration. Lab Invest. 2001;81(4):599–612.

    Article  CAS  PubMed  Google Scholar 

  12. Bronckart Y et al. Development and progression of malignancy in human colon tissues are correlated with expression of specific Ca(2+)-binding S100 proteins. Histol Histopathol. 2001;16(3):707–12.

    CAS  PubMed  Google Scholar 

  13. Shrestha P et al. Localization of Ca(2+)-binding S100 proteins in epithelial tumours of the skin. Virchows Arch. 1998;432(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  14. El-Rifai W et al. Gastric cancers overexpress S100A calcium-binding proteins. Cancer Res. 2002;62(23):6823–6.

    CAS  PubMed  Google Scholar 

  15. Bulk E et al. S100A2 induces metastasis in non-small cell lung cancer. Clin Cancer Res. 2009;15(1):22–9.

    Article  CAS  PubMed  Google Scholar 

  16. Ohuchida K et al. Over-expression of S100A2 in pancreatic cancer correlates with progression and poor prognosis. J Pathol. 2007;213(3):275–82.

    Article  CAS  PubMed  Google Scholar 

  17. Smith SL et al. S100A2 is strongly expressed in airway basal cells, preneoplastic bronchial lesions and primary non-small cell lung carcinomas. Br J Cancer. 2004;91(8):1515–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Liu YF et al. Quantitative proteome analysis reveals annexin A3 as a novel biomarker in lung adenocarcinoma. J Pathol. 2009;217(1):54–64.

    Article  CAS  PubMed  Google Scholar 

  19. Liu YF et al. Identification of annexin A1 as a proinvasive and prognostic factor for lung adenocarcinoma. Clin Exp Metastasis. 2011;28(5):413–25.

    Article  CAS  PubMed  Google Scholar 

  20. Reddy KB, Nabha SM, Atanaskova N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev. 2003;22(4):395–403.

    Article  CAS  PubMed  Google Scholar 

  21. Welch DR et al. Transfection of constitutively active mitogen-activated protein/extracellular signal-regulated kinase kinase confers tumorigenic and metastatic potentials to NIH3T3 cells. Cancer Res. 2000;60(6):1552–6.

    CAS  PubMed  Google Scholar 

  22. Ward Y et al. Signal pathways which promote invasion and metastasis: critical and distinct contributions of extracellular signal-regulated kinase and Ral-specific guanine exchange factor pathways. Mol Cell Biol. 2001;21(17):5958–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wolf S, Haase-Kohn C, Pietzsch J. S100A2 in cancerogenesis: a friend or a foe? Amino Acids. 2011;41(4):849–61.

    Article  CAS  PubMed  Google Scholar 

  24. Wicki R et al. Repression of the candidate tumor suppressor gene S100A2 in breast cancer is mediated by site-specific hypermethylation. Cell Calcium. 1997;22(4):243–54.

    Article  CAS  PubMed  Google Scholar 

  25. Maelandsmo GM et al. Differential expression patterns of S100A2, S100A4 and S100A6 during progression of human malignant melanoma. Int J Cancer. 1997;74(4):464–9.

    Article  CAS  PubMed  Google Scholar 

  26. Ji J et al. Differential expression of S100 gene family in human esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2004;130(8):480–6.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X et al. Down-regulation of S100A2 in lymph node metastases of head and neck cancer. Head Neck. 2007;29(3):236–43.

    Article  PubMed  Google Scholar 

  28. Matsumoto K et al. Expression of S100A2 and S100A4 predicts for disease progression and patient survival in bladder cancer. Urology. 2007;70(3):602–7.

    Article  PubMed  Google Scholar 

  29. Kyriazanos ID et al. Expression and prognostic significance of S100A2 protein in squamous cell carcinoma of the esophagus. Oncol Rep. 2002;9(3):503–10.

    CAS  PubMed  Google Scholar 

  30. Lauriola L et al. Prognostic significance of the Ca(2+) binding protein S100A2 in laryngeal squamous-cell carcinoma. Int J Cancer. 2000;89(4):345–9.

    Article  CAS  PubMed  Google Scholar 

  31. Hountis P et al. Prognostic significance of different immunohistochemical S100A2 protein expression patterns in patients with operable nonsmall cell lung carcinoma. Onco Targets Ther. 2012;5:363–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Luo J et al. Loss of Reprimo and S100A2 expression in human gastric adenocarcinoma. Diagn Cytopathol. 2011;39(10):752–7.

    Article  PubMed  Google Scholar 

  33. Lapi E et al. S100A2 gene is a direct transcriptional target of p53 homologues during keratinocyte differentiation. Oncogene. 2006;25(26):3628–37.

    Article  CAS  PubMed  Google Scholar 

  34. Mueller A et al. The calcium-binding protein S100A2 interacts with p53 and modulates its transcriptional activity. J Biol Chem. 2005;280(32):29186–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Funds of China (81101764), the Fundamental Research Funds for the Central Universities (2010121104), and the Natural Science Foundation of Fujian Province of China (2011 J05099).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Fu Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YF., Liu, QQ., Wang, X. et al. Clinical significance of S100A2 expression in gastric cancer. Tumor Biol. 35, 3731–3741 (2014). https://doi.org/10.1007/s13277-013-1495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1495-3

Keywords

Navigation