Skip to main content
Log in

Identification of annexin A1 as a proinvasive and prognostic factor for lung adenocarcinoma

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Metastasis is the most common cause of death in lung cancer patients and is a major obstacle to the successful treatment. To discover novel metastasis-related proteins in lung adenorcinoma (AdC), quantitative proteomic analysis was performed between primary lung AdC tissues with (LNM AdC) and without lymph node metastasis (non-LNM AdC). In this study, annexin A1 was identified to be significantly up-regulated in LNM AdC compared with non-LNM AdC. Immunohistochemistry showed that annexin A1 over-expression was frequently observed in LNM AdCs and matched lymph node metastases compared with non-LNM AdCs. Annexin A1 over-expression was significantly associated with advanced clinical stage (P < 0.05) and lymph node metastasis (P < 0.05) and increased relapse rate (P < 0.05) and decreased overall survival (P < 0.05) in lung AdCs. Cox regression analysis indicated annexin A1 over-expression was an independent prognostic factor. Furthermore, suppression of annexin A1 expression by siRNA interference significantly inhibited the invasion ability of lung adenocarcinoma cell A549 in vitro. In conclusion, annexin A1 expression correlated with tumor stage, lymph node metastasis, relapse, and patient survival. Annexin A1 is proposed to function importantly in the progression of lung AdC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Lung AdC:

Lung adenocarcinoma

LNM:

Lymph node metastasis

Non-LNM AdC:

Lung adenocarcinoma without lymph node metastasis

LNM AdC:

Lung adenocarcinoma with lymph node metastasis

2-DIGE:

Two-dimensional difference gel electrophoresis

Positive LN:

Positive lymph node

HR:

Hazard ratio

CI:

Confidence interval

References

  1. Little AG et al (2007) National survey of non-small cell lung cancer in the United States: epidemiology, pathology and patterns of care. Lung Cancer 57(3):253–260

    Article  PubMed  Google Scholar 

  2. Liao ML et al (2007) Incidence, time trend, survival, and predictive factors of lung cancer in Shanghai populations. Zhonghua Yi Xue Za Zhi 87(27):1876–1880

    PubMed  Google Scholar 

  3. Jemal A et al. (2006) Cancer statistics, 2006. CA Cancer J Clin 56(2):106-30

  4. Giese A et al (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21(8):1624–1636

    Article  PubMed  CAS  Google Scholar 

  5. Woodhouse EC, Chuaqui RF, Liotta LA (1997) General mechanisms of metastasis. Cancer 80(8 Suppl):1529–1537

    Article  PubMed  CAS  Google Scholar 

  6. Kohn EC (1993) Development and prevention of metastasis. Anticancer Res 13(6B):2553–2559

    PubMed  CAS  Google Scholar 

  7. Fidler IJ, Kripke ML (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science 197(4306):893–895

    Article  PubMed  CAS  Google Scholar 

  8. Steeg PS et al (1988) Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst 80(3):200–204

    Article  PubMed  CAS  Google Scholar 

  9. Chen JJ et al (2001) Global analysis of gene expression in invasion by a lung cancer model. Cancer Res 61(13):5223–5230

    PubMed  CAS  Google Scholar 

  10. Van den Bergh G, Arckens L (2004) Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr Opin Biotechnol 15(1):38–43

    Article  PubMed  Google Scholar 

  11. Yan JX et al (2002) Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics 2(12):1682–1698

    Article  PubMed  CAS  Google Scholar 

  12. Di Rosa M et al (1984) Anti-phospholipase proteins. Prostaglandins 28(4):441–442

    Article  PubMed  CAS  Google Scholar 

  13. Wallner BP et al (1986) Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature 320(6057):77–81

    Article  PubMed  CAS  Google Scholar 

  14. Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82(2):331–371

    PubMed  CAS  Google Scholar 

  15. Rescher U, Gerke V (2004) Annexins—unique membrane binding proteins with diverse functions. J Cell Sci 117(Pt 13):2631–2639

    Article  PubMed  CAS  Google Scholar 

  16. Brichory FM et al (2001) An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc Natl Acad Sci U S A 98(17):9824–9829

    Article  PubMed  CAS  Google Scholar 

  17. Wang KL et al (2006) Expression of Annexin A1 in Esophageal and Esophagogastric Junction Adenocarcinomas: Association with Poor Outcome. Clin Cancer Res 12(15):4598–4604

    Article  PubMed  CAS  Google Scholar 

  18. Lim LH, Pervaiz S (2007) Annexin 1: the new face of an old molecule. Faseb J 21(4):968–975

    Article  PubMed  CAS  Google Scholar 

  19. Emoto K et al (2001) Annexin II overexpression correlates with stromal tenascin-C overexpression: a prognostic marker in colorectal carcinoma. Cancer 92(6):1419–1426

    Article  PubMed  CAS  Google Scholar 

  20. Yang YX et al (2006) Proteome analysis of multidrug resistance in vincristine-resistant human gastric cancer cell line SGC7901/VCR. Proteomics 6(6):2009–2021

    Article  PubMed  CAS  Google Scholar 

  21. Yang F et al (2007) Identification of tumor antigens in human lung squamous carcinoma by serological proteome analysis. J Proteome Res 6(2):751–758

    Article  PubMed  CAS  Google Scholar 

  22. Cheng A-L et al (2008) Identification of Novel Nasopharyngeal Carcinoma Biomarkers by Laser Capture Microdissection and Proteomic Analysis. Clin Cancer Res 14(2):435–445

    Article  PubMed  CAS  Google Scholar 

  23. Tian T et al (2007) Determination of metastasis-associated proteins in non-small cell lung cancer by comparative proteomic analysis. Cancer Sci 98(8):1265–1274

    Article  PubMed  CAS  Google Scholar 

  24. Chang GC et al (2006) Identification of alpha-enolase as an autoantigen in lung cancer: its overexpression is associated with clinical outcomes. Clin Cancer Res 12(19):5746–5754

    Article  PubMed  CAS  Google Scholar 

  25. Chen G et al (2003) Protein profiles associated with survival in lung adenocarcinoma. Proc Natl Acad Sci U S A 100(23):13537–13542

    Article  PubMed  CAS  Google Scholar 

  26. Arai K et al (2001) Immunohistochemical investigation of S100A9 expression in pulmonary adenocarcinoma: S100A9 expression is associated with tumor differentiation. Oncol Rep 8(3):591–596

    PubMed  CAS  Google Scholar 

  27. El-Rifai W et al (2002) Gastric cancers overexpress S100A calcium-binding proteins. Cancer Res 62(23):6823–6826

    PubMed  CAS  Google Scholar 

  28. Hermani A et al (2005) Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res 11(14):5146–5152

    Article  PubMed  CAS  Google Scholar 

  29. Oremek G et al (2007) The significance of TU M2-PK tumor marker for lung cancer diagnostics. Klin Med (Mosk) 85(7):56–58

    CAS  Google Scholar 

  30. Hathurusinghe HR, Goonetilleke KS, Siriwardena AK (2007) Current status of tumor M2 pyruvate kinase (tumor M2-PK) as a biomarker of gastrointestinal malignancy. Ann Surg Oncol 14(10):2714–2720

    Article  PubMed  Google Scholar 

  31. Weinberger R et al (2007) The pyruvate kinase isoenzyme M2 (Tu M2-PK) as a tumour marker for renal cell carcinoma. Eur J Cancer Care (Engl) 16(4):333–337

    Article  CAS  Google Scholar 

  32. Ahmed AS et al (2007) M2-PK as a novel marker in ovarian cancer. A prospective cohort study. Eur J Gynaecol Oncol 28(2):83–88

    PubMed  CAS  Google Scholar 

  33. Chen ZG (2007) Exploration of metastasis-related proteins as biomarkers and therapeutic targets in the treatment of head and neck cancer. Curr Cancer Drug Targets 7(7):613–622

    Article  PubMed  CAS  Google Scholar 

  34. Liang L, Qu L, Ding Y (2007) Protein and mRNA characterization in human colorectal carcinoma cell lines with different metastatic potentials. Cancer Invest 25(6):427–434

    Article  PubMed  CAS  Google Scholar 

  35. Tomonaga T et al (2004) Identification of Altered Protein Expression and Post-Translational Modifications in Primary Colorectal Cancer by Using Agarose Two-Dimensional Gel Electrophoresis. Clin Cancer Res 10(6):2007–2014

    Article  PubMed  CAS  Google Scholar 

  36. Babbin BA et al (2006) Annexin I regulates SKCO-15 cell invasion by signaling through formyl peptide receptors. J Biol Chem 281(28):19588–19599

    Article  PubMed  CAS  Google Scholar 

  37. Dai Z et al (2006) Identification and analysis of altered alpha1, 6-fucosylated glycoproteins associated with hepatocellular carcinoma metastasis. Proteomics 6(21):5857–5867

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from National Key Basic Research Program of China (2001CB510207), the Fundamental Research Funds for the Central Universities (2010121104) and Outstanding Scholars of New Era from Ministry of Education of China (2002-48).

Conflicts of interest

No conflicts of interest are declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying-Fu Liu or Zhu-Chu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YF., Zhang, PF., Li, MY. et al. Identification of annexin A1 as a proinvasive and prognostic factor for lung adenocarcinoma. Clin Exp Metastasis 28, 413–425 (2011). https://doi.org/10.1007/s10585-011-9380-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9380-1

Keywords

Navigation