Skip to main content

Advertisement

Log in

Ethnicity modifies the association between functional microRNA polymorphisms and breast cancer risk: a HuGE meta-analysis

  • Research Article
  • Published:
Tumor Biology

Abstract

Common functional polymorphisms in the promoter region of microRNAs (miRNAs), based on multiple lines of evidence, might participate in transcriptional regulation and other biological processes, which interact to increase the risk of developing breast cancer. Since 2005, many studies have investigated the association between breast cancer risk and common single nucleotide polymorphisms (SNPs) in miRNAs. However, the findings of several meta-analyses are inconclusive or ambiguous. The aim of this Human Genome Epidemiology meta-analysis was to determine more precisely the relationship between common miRNA polymorphisms and breast cancer risk. Twelve case–control studies with a total of 7,170 breast cancer patients and 8,783 healthy controls were included. Eight SNPs in miRNA genes were examined. When all eligible studies were pooled in the meta-analysis, the miR-196a-2 rs11614913*T, miR-499 rs3746444*T, and miR-605 rs2043556*A alleles predicted a decreased risk of breast cancer among Asians, while not Caucasians. In addition, the miR-27a rs895919*C allele might be a protective factor for breast cancer among Caucasians. However, for the miR-146a rs2910164 (G>C), miR-149 rs2292832 (G>T), miR-373 rs12983273 (C>T), and miR-423 rs6505162 (C>A) polymorphisms, we failed to find any significant association with the risk of breast cancer in any genetic model. In conclusion, the current meta-analysis supports that the miR-196a-2 rs11614913*T, miR-499 rs3746444*T, miR-605 rs2043556*A, and miR-27a rs895919*C alleles might be protective factors for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. McCormack VA, Boffetta P. Today’s lifestyles, tomorrow’s cancers: trends in lifestyle risk factors for cancer in low- and middle-income countries. Ann Oncol. 2011;22:2349–57.

    Article  CAS  PubMed  Google Scholar 

  3. Stuckey A. Breast cancer: epidemiology and risk factors. Clin Obstet Gynecol. 2011;54:96–102.

    Article  PubMed  Google Scholar 

  4. Antoniou AC, Easton DF. Models of genetic susceptibility to breast cancer. Oncogene. 2006;25:5898–905.

    Article  CAS  PubMed  Google Scholar 

  5. Campeau PM, Foulkes WD, Tischkowitz MD. Hereditary breast cancer: new genetic developments, new therapeutic avenues. Hum Genet. 2008;124:31–42.

    Article  CAS  PubMed  Google Scholar 

  6. Evans JP, Skrzynia C, Susswein L, Harlan M. Genetics and the young woman with breast cancer. Breast Dis. 2005;23:17–29.

    PubMed  Google Scholar 

  7. Balmana J, Diez O, Rubio IT, Cardoso F. BRCA in breast cancer: ESMO clinical practice guidelines. Ann Oncol. 2011;22 Suppl 6:vi31–4.

    PubMed  Google Scholar 

  8. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  9. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.

    Article  CAS  PubMed  Google Scholar 

  10. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102–14.

    Article  CAS  PubMed  Google Scholar 

  11. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861–74.

    Article  CAS  PubMed  Google Scholar 

  12. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–70.

    Article  CAS  PubMed  Google Scholar 

  13. Duan R, Pak C, Jin P. Single nucleotide polymorphism associated with mature mir-125a alters the processing of pri-mirna. Hum Mol Genet. 2007;16:1124–31.

    Article  CAS  PubMed  Google Scholar 

  14. Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, et al. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2008;105:7269–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chen J, Tian W, Cai H, He H, Deng Y. (2012) Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer. Med Oncol 29:2527–2534

    Google Scholar 

  16. Toyama T, Kondo N, Endo Y, Sugiura H, Yoshimoto N, et al. High expression of microRNA-210 is an independent factor indicating a poor prognosis in Japanese triple-negative breast cancer patients. Jpn J Clin Oncol. 2012;42:256–63.

    Article  PubMed  Google Scholar 

  17. Wang C, Gao C, Zhuang JL, Ding C, Wang Y (2012) A combined approach identifies three mRNAs that are down-regulated by microRNA-29b and promote invasion ability in the breast cancer cell line MCF-7. J Cancer Res Clin Oncol 138:2127–2136

    Google Scholar 

  18. Zhao FL, Hu GD, Wang XF, Zhang XH, Zhang YK, et al. Serum overexpression of microRNA-10b in patients with bone metastatic primary breast cancer. J Int Med Res. 2012;40:859–66.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou X, Marian C, Makambi KH, Kosti O, Kallakury BV, et al. MicroRNA-9 as potential biomarker for breast cancer local recurrence and tumor estrogen receptor status. PloS One. 2012;7:e39011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436:740–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.

    Article  CAS  PubMed  Google Scholar 

  22. Esquela-Kerscher A, Slack FJ. OncomiRs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  23. Qiu LX, He J, Wang MY, Zhang RX, Shi TY, et al. The association between common genetic variant of microRNA-146a and cancer susceptibility. Cytokine. 2011;56:695–8.

    Article  CAS  PubMed  Google Scholar 

  24. Xu W, Xu J, Liu S, Chen B, Wang X, et al. Effects of common polymorphisms rs11614913 in miR-196a2 and rs2910164 in miR-146a on cancer susceptibility: a meta-analysis. PloS One. 2011;6:e20471.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wang AX, Xu B, Tong N, Chen SQ, Yang Y, et al. Meta-analysis confirms that a common G/C variant in the pre-miR-146a gene contributes to cancer susceptibility and that ethnicity, gender and smoking status are risk factors. Gen Mol Res: GMR. 2012;11:3051–62.

    Article  CAS  Google Scholar 

  26. Wang F, Sun G, Zou Y, Fan L, Song B. Lack of association of miR-146a rs2910164 polymorphism with gastrointestinal cancers: evidence from 10206 subjects. PloS One. 2012;7:e39623.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Wang J, Bi J, Liu X, Li K, Di J, et al. Has-miR-146a polymorphism (rs2910164) and cancer risk: a meta-analysis of 19 case–control studies. Mol Biol Rep. 2012;39:4571–9.

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, Wang Q, Liu H, Shao N, Tan B, et al. The association of miR-146a rs2910164 and miR-196a2 rs11614913 polymorphisms with cancer risk: a meta-analysis of 32 studies. Mutagenesis. 2012;27:779–88.

    Article  CAS  PubMed  Google Scholar 

  29. Lian H, Wang L, Zhang J. Increased risk of breast cancer associated with cc genotype of has-miR-146a rs2910164 polymorphism in Europeans. PloS One. 2012;7:e31615.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Wang F, Sun G, Zou Y, Li Y, Hao L, et al. Association of microRNA-499 rs3746444 polymorphism with cancer risk: evidence from 7188 cases and 8548 controls. PloS One. 2012;7:e45042.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wang L, Qian S, Zhi H, Zhang Y, Wang B, et al. The association between Hsa-miR-499t>c polymorphism and cancer risk: a meta-analysis. Gene. 2012;508:9–14.

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Yang B, Ren X. Hsa-miR-499 polymorphism (rs3746444) and cancer risk: a meta-analysis of 17 case–control studies. Gene. 2012;509:267–72.

    Article  CAS  PubMed  Google Scholar 

  33. Qiu MT, Hu JW, Ding XX, Yang X, Zhang Z, et al. Hsa-miR-499 rs3746444 polymorphism contributes to cancer risk: a meta-analysis of 12 studies. PloS One. 2012;7:e50887.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. da Costa BR, Cevallos M, Altman DG, Rutjes AW, Egger M. Uses and misuses of the strobe statement: bibliographic study. BMJ Open. 2011;1:e000048.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    Article  PubMed  Google Scholar 

  36. Zintzaras E, Ioannidis JP. Heterogeneity testing in meta-analysis of genome searches. Genet Epidemiol. 2005;28:123–37.

    Article  PubMed  Google Scholar 

  37. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Comparison of two methods to detect publication bias in meta-analysis. JAMA : J Am Med Assoc. 2006;295:676–80.

    Article  CAS  Google Scholar 

  38. Hoffman AE, Zheng T, Yi C, Leaderer D, Weidhaas J, et al. MicroRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 2009;69:5970–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hu Z, Liang J, Wang Z, Tian T, Zhou X, et al. Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum Mutat. 2009;30:79–84.

    Article  CAS  PubMed  Google Scholar 

  40. Catucci I, Yang R, Verderio P, Pizzamiglio S, Heesen L, et al. Evaluation of SNPs in miR-146a, miR196a2 and miR-499 as low-penetrance alleles in German and Italian familial breast cancer cases. Hum Mutat. 2010;31:E1052–7.

    Article  PubMed  Google Scholar 

  41. Pastrello C, Polesel J, Della Puppa L, Viel A, Maestro R. Association between Hsa-miR-146a genotype and tumor age-of-onset in BRCA1/BRCA2-negative familial breast and ovarian cancer patients. Carcinogenesis. 2010;31:2124–6.

    Article  CAS  PubMed  Google Scholar 

  42. Yang R, Schlehe B, Hemminki K, Sutter C, Bugert P, et al. A genetic variant in the pre-miR-27a oncogene is associated with a reduced familial breast cancer risk. Breast Cancer Res Treat. 2010;121:693–702.

    Article  PubMed  Google Scholar 

  43. Jedlinski DJ, Gabrovska PN, Weinstein SR, Smith RA, Griffiths LR. Single nucleotide polymorphism in Hsa-miR-196a-2 and breast cancer risk: a case control study. Twin Res Hum Genet Off J Int Soc Twin Stud. 2011;14:417–21.

    Article  Google Scholar 

  44. Zhang P (2011) Polymorphisms of microRNA and ESR1 genes and their association with triple negative breast cancer risk and prognosis. Ph.D. thesis, Beijing Union Medical College

  45. Alshatwi AA, Shafi G, Hasan TN, Syed NA, Al-Hazzani AA, et al. Differential expression profile and genetic variants of microRNAs sequences in breast cancer patients. PloS One. 2012;7:e30049.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Catucci I, Verderio P, Pizzamiglio S, Bernard L, Dall’olio V, et al. The SNP rs895819 in miR-27a is not associated with familial breast cancer risk in Italians. Breast Cancer Res Treat. 2012;133:805–7.

    Article  PubMed  Google Scholar 

  47. Linhares JJ, Azevedo Jr M, Siufi AA, de Carvalho CV, Wolgien MD, et al. Evaluation of single nucleotide polymorphisms in microRNAs (Hsa-miR-196a2 rs11614913 C/T) from Brazilian women with breast cancer. BMC Med Genet. 2012;13:119.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Smith RA, Jedlinski DJ, Gabrovska PN, Weinstein SR, Haupt L, et al. A genetic variant located in miR-423 is associated with reduced breast cancer risk. Cancer Genomics Proteomics. 2012;9:115–8.

    CAS  PubMed  Google Scholar 

  49. Zhang M, Jin M, Yu Y, Zhang S, Wu Y, et al. Associations of miRNA polymorphisms and female physiological characteristics with breast cancer risk in Chinese population. Eur J Cancer Care. 2012;21:274–80.

    Article  CAS  Google Scholar 

  50. Chen T, Li Z, Yan J, Yang X, Salminen W. MicroRNA expression profiles distinguish the carcinogenic effects of riddelliine in rat liver. Mutagenesis. 2012;27:59–66.

    Article  PubMed  Google Scholar 

  51. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10:389–402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Landi D, Gemignani F, Landi S. Role of variations within microRNA-binding sites in cancer. Mutagenesis. 2012;27:205–10.

    Article  CAS  PubMed  Google Scholar 

  53. Negrini M, Calin GA. Breast cancer metastasis: a microRNA story. Breast Cancer Res. 2008;10:203.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Teraoka SN, Bernstein JL, Reiner AS, Haile RW, Bernstein L, et al. Single nucleotide polymorphisms associated with risk for contralateral breast cancer in the Women’s Environment, Cancer, and Radiation Epidemiology (WECARE) Study. Breast Cancer Res. 2011;13:R114.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 2007;67:2456–68.

    Article  CAS  PubMed  Google Scholar 

  56. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39:673–7.

    Article  CAS  PubMed  Google Scholar 

  57. Chu H, Wang M, Shi D, Ma L, Zhang Z, et al. Hsa-miR-196a2 rs11614913 polymorphism contributes to cancer susceptibility: evidence from 15 case–control studies. PloS One. 2011;6:e18108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Gao LB, Bai P, Pan XM, Jia J, Li LJ, et al. The association between two polymorphisms in pre-miRNAs and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2011;125:571–4.

    Article  PubMed  Google Scholar 

  59. Qiu LX, Wang Y, Xia ZG, Xi B, Mao C, et al. Mir-196a2c allele is a low-penetrant risk factor for cancer development. Cytokine. 2011;56:589–92.

    Article  CAS  PubMed  Google Scholar 

  60. Tian T, Xu Y, Dai J, Wu J, Shen H, et al. Functional polymorphisms in two pre-microRNAs and cancer risk: a meta-analysis. Int J Mol Epidemiol Genet. 2010;1:358–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Wang F, Ma YL, Zhang P, Yang JJ, Chen HQ, et al. A genetic variant in microRNA-196a2 is associated with increased cancer risk: a meta-analysis. Mol Biol Rep. 2012;39:269–75.

    Article  CAS  PubMed  Google Scholar 

  62. Garcia AI, Cox DG, Barjhoux L, Verny-Pierre C, Barnes D, et al (2011) The rs2910164:G>c snp in the mir146a gene is not associated with breast cancer risk in brca1 and brca2 mutation carriers. Human Mutat 32:1004–1007

    Google Scholar 

  63. Zhong S, Chen Z, Xu J, Li W, Zhao J (2013) Pre-mir-27a rs895819 polymorphism and cancer risk: a meta-analysis. Mol Biol Rep 40:3181–3186

    Google Scholar 

  64. Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res. 2007;67:11001–11.

    Article  CAS  PubMed  Google Scholar 

  65. Guttilla IK, White BA. Coordinate regulation of foxo1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 2009;284:23204–16.

    Article  CAS  PubMed  Google Scholar 

  66. Ma Y, Yu S, Zhao W, Lu Z, Chen J. MiR-27a regulates the growth, colony formation and migration of pancreatic cancer cells by targeting sprouty2. Cancer Lett. 2010;298:150–8.

    Article  CAS  PubMed  Google Scholar 

  67. Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96:434–42.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, QH., Wang, QB. & Zhang, B. Ethnicity modifies the association between functional microRNA polymorphisms and breast cancer risk: a HuGE meta-analysis. Tumor Biol. 35, 529–543 (2014). https://doi.org/10.1007/s13277-013-1074-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1074-7

Keywords

Navigation