Skip to main content

Advertisement

Log in

Target protein for Xklp2 (TPX2), a microtubule-related protein, contributes to malignant phenotype in bladder carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Increasing evidence demonstrated that TPX2 was highly expressed and tightly associated with human tumor development and progression. However, its precise role in bladder carcinoma remains to be delineated. In the present study, we revealed the high expression of TPX2 at both mRNA and protein levels in bladder carcinoma tissues and cells, and TPX2 levels in pN1-3 and pT2-4 status were significantly higher than those in pN0 and pTa-T1 status, respectively. Additionally, high TPX2 level was strongly associated with pT status (P = 0.001), higher histological grade (P = 0.001), lymph node metastasis (P = 0.022), and shorter survival time (P = 0.0279). Further investigation showed that TPX2 level in T24 cells was markedly higher than those in 5637, J82 and RT4 cells, in which RT4, a well-differentiated cell line derived from bladder carcinoma with low-grade non-invasive T0, displayed the lowest TPX2 mRNA and protein levels. Besides, TPX2 overexpression promoted proliferation and tumorigenicity, shortened cell cycle in G0/G1 phase, and suppressed cell apoptosis in T24 cells; conversely, TPX2 depletion exhibited opposite effects. Furthermore, TPX2 overexpression evoked the elevation of cyclin D1 and cdk2 levels as well as reduction of p21 level and caspase-3 activity, whereas reversed effects were observed in TPX2-depleted T24 cells. Taken altogether, TPX2 may play a central role in the development and progression of bladder carcinoma, and thus inhibition of TPX2 level may be a novel strategy for therapy of the patients with bladder carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ploeg M, Aben KK, Kiemeney LA. The present and future burden of urinary bladder cancer in the world. World J Urol. 2009;27(3):289–93.

    Article  PubMed  Google Scholar 

  2. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, et al. Cancer statistics, 2004. CA Cancer J Clin. 2004;54(1):8–29.

    Article  PubMed  Google Scholar 

  3. Kaufman DS, Shipley WU, Feldman AS. Bladder cancer. Lancet. 2009;374(9685):239–49.

    Article  PubMed  CAS  Google Scholar 

  4. Jacobs BL, Lee CT, Montie JE. Bladder cancer in 2010: how far have we come? CA Cancer J Clin. 2010;60(4):244–72.

    Article  PubMed  Google Scholar 

  5. Shariat SF, Karakiewicz PI, Palapattu GS, Lotan Y, Rogers CG, Amiel GE, et al. Outcomes of radical cystectomy for transitional cell carcinoma of the bladder: a contemporary series from the Bladder Cancer Research Consortium. J Urol. 2006;176(6 Pt 1):2414–22. discussion 2422.

    Article  PubMed  Google Scholar 

  6. Gorin MA, Ayyathurai R, Soloway MS. Diagnosis and treatment of bladder cancer: how can we improve? Postgrad Med. 2012;124(3):28–36.

    Article  PubMed  Google Scholar 

  7. Heidebrecht HJ, Buck F, Steinmann J, Sprenger R, Wacker HH, Parwaresch R. p100: a novel proliferation-associated nuclear protein specifically restricted to cell cycle phases S, G2, and M. Blood. 1997;90(1):226–33.

    PubMed  CAS  Google Scholar 

  8. Wittmann T, Boleti H, Antony C, Karsenti E, Vernos I. Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J Cell Biol. 1998;143(3):673–85.

    Article  PubMed  CAS  Google Scholar 

  9. Wittmann T, Wilm M, Karsenti E, Vernos I. TPX2, A novel xenopus MAP involved in spindle pole organization. J Cell Biol. 2000;149(7):1405–18.

    Article  PubMed  CAS  Google Scholar 

  10. Li B, Qi XQ, Chen X, Huang X, Liu GY, Chen HR, et al. Expression of targeting protein for Xenopus kinesin-like protein 2 is associated with progression of human malignant astrocytoma. Brain Res. 2010;1352:200–7.

    Article  PubMed  CAS  Google Scholar 

  11. Kadara H, Lacroix L, Behrens C, Solis L, Gu X, Lee JJ, et al. Identification of gene signatures and molecular markers for human lung cancer prognosis using an in vitro lung carcinogenesis system. Cancer Prev Res (Phila). 2009;2(8):702–11.

    Article  CAS  Google Scholar 

  12. Stuart JE, Lusis EA, Scheck AC, Coons SW, Lal A, Perry A, et al. Identification of gene markers associated with aggressive meningioma by filtering across multiple sets of gene expression arrays. J Neuropathol Exp Neurol. 2011;70(1):1–12.

    Article  PubMed  CAS  Google Scholar 

  13. Chang H, Wang J, Tian Y, Xu J, Gou X, Cheng J. The TPX2 gene is a promising diagnostic and therapeutic target for cervical cancer. Oncol Rep. 2012;27(5):1353–9.

    PubMed  CAS  Google Scholar 

  14. Scotto L, Narayan G, Nandula SV, Arias-Pulido H, Subramaniyam S, Schneider A, et al. Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: potential role in progression. Genes Chromosomes Cancer. 2008;47(9):755–65.

    Article  PubMed  CAS  Google Scholar 

  15. Tonon G, Wong KK, Maulik G, Brennan C, Feng B, Zhang Y, et al. High-resolution genomic profiles of human lung cancer. Proc Natl Acad Sci U S A. 2005;102(27):9625–30.

    Article  PubMed  CAS  Google Scholar 

  16. Satow R, Shitashige M, Kanai Y, Takeshita F, Ojima H, Jigami T, et al. Combined functional genome survey of therapeutic targets for hepatocellular carcinoma. Clin Cancer Res. 2010;16(9):2518–28.

    Article  PubMed  CAS  Google Scholar 

  17. Ramakrishna M, Williams LH, Boyle SE, Bearfoot JL, Sridhar A, Speed TP, et al. Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis. PLoS One. 2010;5(4):e9983.

    Article  PubMed  Google Scholar 

  18. Warner SL, Stephens BJ, Nwokenkwo S, Hostetter G, Sugeng A, Hidalgo M, et al. Validation of TPX2 as a potential therapeutic target in pancreatic cancer cells. Clin Cancer Res. 2009;15(21):6519–28.

    Article  PubMed  CAS  Google Scholar 

  19. Raman JD, Mongan NP, Tickoo SK, Boorjian SA, Scherr DS, Gudas LJ. Increased expression of the polycomb group gene, EZH2, in transitional cell carcinoma of the bladder. Clin Cancer Res. 2005;11(24 Pt 1):8570–6.

    Article  PubMed  CAS  Google Scholar 

  20. Liu HT, Wang N, Wang X, Li SL. Overexpression of Pim-1 is associated with poor prognosis in patients with esophageal squamous cell carcinoma. J Surg Oncol. 2010;102(6):683–8.

    Article  PubMed  CAS  Google Scholar 

  21. Lu Z, Liu H, Xue L, Xu P, Gong T, Hou G. An activated Notch1 signaling pathway inhibits cell proliferation and induces apoptosis in human esophageal squamous cell carcinoma cell line EC9706. Int J Oncol. 2008;32(3):643–51.

    PubMed  CAS  Google Scholar 

  22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  PubMed  CAS  Google Scholar 

  23. Zhao H, Yang J, Fan T, Li S, Ren X. RhoE functions as a tumor suppressor in esophageal squamous cell carcinoma and modulates the PTEN/PI3K/Akt signaling pathway. Tumour Biol. 2012;33(5):1363–74.

    Article  PubMed  CAS  Google Scholar 

  24. Masters JR, Hepburn PJ, Walker L, Highman WJ, Trejdosiewicz LK, Povey S, et al. Tissue culture model of transitional cell carcinoma: characterization of twenty-two human urothelial cell lines. Cancer Res. 1986;46(7):3630–6.

    PubMed  CAS  Google Scholar 

  25. Knowles MA. Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis. 2006;27(3):361–73.

    Article  PubMed  CAS  Google Scholar 

  26. Vainio P, Mpindi JP, Kohonen P, Fey V, Mirtti T, Alanen KA, et al. High-throughput transcriptomic and RNAi analysis identifies AIM1, ERGIC1, TMED3 and TPX2 as potential drug targets in prostate cancer. PLoS One. 2012;7(6):e39801.

    Article  PubMed  CAS  Google Scholar 

  27. Smith LT, Mayerson J, Nowak NJ, Suster D, Mohammed N, Long S, et al. 20q11.1 amplification in giant-cell tumor of bone: array CGH, FISH, and association with outcome. Genes Chromosomes Cancer. 2006;45(10):957–66.

    Article  PubMed  CAS  Google Scholar 

  28. Martens-de Kemp SR, Nagel R, Stigter-van Walsum M, van der Meulen IH, van Beusechem VW, Braakhuis BJ, et al. Functional genetic screens identify genes essential for tumor cell survival in head and neck and lung cancer. Clin Cancer Res. 2013;19(8):1994–2003.

    Article  PubMed  CAS  Google Scholar 

  29. Shigeishi H, Ohta K, Hiraoka M, Fujimoto S, Minami M, Higashikawa K, et al. Expression of TPX2 in salivary gland carcinomas. Oncol Rep. 2009;21(2):341–4.

    PubMed  CAS  Google Scholar 

  30. Ma Y, Lin D, Sun W, Xiao T, Yuan J, Han N, et al. Expression of targeting protein for xklp2 associated with both malignant transformation of respiratory epithelium and progression of squamous cell lung cancer. Clin Cancer Res. 2006;12(4):1121–7.

    Article  PubMed  CAS  Google Scholar 

  31. Jiang G, Cao F, Ren G, Gao D, Bhakta V, Zhang Y, et al. PRSS3 promotes tumour growth and metastasis of human pancreatic cancer. Gut. 2010;59(11):1535–44.

    Article  PubMed  CAS  Google Scholar 

  32. Olsson H, Hultman P, Monsef N, Rosell J, Jahnson S. Immunohistochemical evaluation of cell cycle regulators: impact on predicting prognosis in stage t1 urinary bladder cancer. ISRN Urol. 2012;2012:379081.

    PubMed  Google Scholar 

  33. Lenz P, Pfeiffer R, Baris D, Schned AR, Takikita M, Poscablo MC, et al. Cell-cycle control in urothelial carcinoma: large-scale tissue array analysis of tumor tissue from Maine and Vermont. Cancer Epidemiol Biomarkers Prev. 2012;21(9):1555–64.

    Article  PubMed  CAS  Google Scholar 

  34. Shariat SF, Ashfaq R, Sagalowsky AI, Lotan Y. Correlation of cyclin D1 and E1 expression with bladder cancer presence, invasion, progression, and metastasis. Hum Pathol. 2006;37(12):1568–76.

    Article  PubMed  CAS  Google Scholar 

  35. Mitra AP, Lin H, Datar RH, Cote RJ. Molecular biology of bladder cancer: prognostic and clinical implications. Clin Genitourin Cancer. 2006;5(1):67–77.

    Article  PubMed  CAS  Google Scholar 

  36. McKnight JJ, Gray SB, O’Kane HF, Johnston SR, Williamson KE. Apoptosis and chemotherapy for bladder cancer. J Urol. 2005;173(3):683–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huixiang Li or Baoping Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, L., Li, S., Xu, C. et al. Target protein for Xklp2 (TPX2), a microtubule-related protein, contributes to malignant phenotype in bladder carcinoma. Tumor Biol. 34, 4089–4100 (2013). https://doi.org/10.1007/s13277-013-1000-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1000-z

Keywords

Navigation