Skip to main content

Advertisement

Log in

KNSTRN promotes tumorigenesis and gemcitabine resistance by activating AKT in bladder cancer

  • Article
  • Published:
Oncogene Submit manuscript

Abstract

KNSTRN is a component of the mitotic spindle, which was rarely investigated in tumorigenesis. AKT plays an essential role in tumorigenesis by modulating the phosphorylation of various substrates. The activation of AKT is regulated by PTEN and PIP3. Here, we prove KNSTRN is positively correlated with malignancy of bladder cancer and KNSTRN activates AKT phosphorylation at Thr308 and Ser473. More importantly, our study reveals that both KNSTRN and PTEN interact with PH domain of AKT at cell membrane. The amount of KNSTRN interacted with AKT is negatively related to PTEN. Furthermore, PIP3 pull-down assay proves that KNSTRN promoted AKT movement to PIP3. These data suggest KNSTRN may activate AKT phosphorylation by promoting AKT movement to PIP3 and alleviating PTEN suppression. Based on the activation of AKT phosphorylation, our study demonstrates that KNSTRN promotes bladder cancer metastasis and gemcitabine resistance in vitro and in vivo. Meanwhile, the effect of KNSTRN on tumorigenesis and gemcitabine resistance could be restored by AKT specific inhibitor MK2206 or AKT overexpression. In conclusion, we identify an oncogene KNSTRN that promotes tumorigenesis and gemcitabine resistance by activating AKT phosphorylation and may serve as a therapeutic target in bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Downregulation of KNSTRN inhibits bladder cancer metastasis in vitro and in vivo.
Fig. 2: Knockdown of KNSTRN promotes the chemosensitivity of gemcitabine to bladder cancer in vitro and in vivo.
Fig. 3: KNSTRN interacts with AKT and suppresses the activation of AKT.
Fig. 4: KNSTRN activates AKT phosphorylation by promoting AKT movement to PIP3 and alleviating PTEN suppression.
Fig. 5: KNSTRN promotes bladder cancer metastasis via AKT/GSK3β/Snail pathway.
Fig. 6: KNSTRN promotes gemcitabine resistance via AKT/FOXO1 pathway.
Fig. 7: The proposed model revealing KNSTRN promotes tumorigenesis and gemcitabine resistance by activating AKT in bladder cancer.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  Google Scholar 

  3. Choo Z, Koh RY, Wallis K, Koh TJ, Kuick CH, Sobrado V, et al. XAF1 promotes neuroblastoma tumor suppression and is required for KIF1Bbeta-mediated apoptosis. Oncotarget. 2016;7:34229–39.

    Article  Google Scholar 

  4. Cao D, Qi Z, Pang Y, Li H, Xie H, Wu J, et al. Retinoic Acid-Related Orphan Receptor C Regulates Proliferation, Glycolysis, and Chemoresistance via the PD-L1/ITGB6/STAT3 Signaling Axis in Bladder Cancer. Cancer Res. 2019;79:2604–18.

    Article  CAS  Google Scholar 

  5. Miyamoto DT, Mouw KW, Feng FY, Shipley WU, Efstathiou JA. Molecular biomarkers in bladder preservation therapy for muscle-invasive bladder cancer. Lancet Oncol. 2018;19:e683–95.

    Article  CAS  Google Scholar 

  6. Daizumoto K, Yoshimaru T, Matsushita Y, Fukawa T, Uehara H, Ono M, et al. A DDX31/Mutant-p53/EGFR Axis Promotes Multistep Progression of Muscle-Invasive Bladder Cancer. Cancer Res. 2018;78:2233–47.

    Article  CAS  Google Scholar 

  7. Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med. 2014;46:372–83.

    Article  CAS  Google Scholar 

  8. Staal SP. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA. 1987;84:5034–7.

    Article  CAS  Google Scholar 

  9. Zhang P, Wang D, Zhao Y, Ren S, Gao K, Ye Z, et al. Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation. Nat Med. 2017;23:1055–62.

    Article  CAS  Google Scholar 

  10. Chu N, Salguero AL, Liu AZ, Chen Z, Dempsey DR, Ficarro SB, et al. Akt Kinase Activation Mechanisms Revealed Using Protein Semisynthesis. Cell. 2018;174:897–907.e814.

    Article  CAS  Google Scholar 

  11. Delaloge S, DeForceville L. Targeting PI3K/AKT pathway in triple-negative breast cancer. Lancet Oncol. 2017;18:1293–4.

    Article  CAS  Google Scholar 

  12. LoRusso PM. Inhibition of the PI3K/AKT/mTOR Pathway in Solid Tumors. J Clin Oncol. 2016;34:3803–15.

    Article  Google Scholar 

  13. Wang G, Long J, Gao Y, Zhang W, Han F, Xu C, et al. SETDB1-mediated methylation of Akt promotes its K63-linked ubiquitination and activation leading to tumorigenesis. Nat Cell Biol. 2019;21:214–25.

    Article  CAS  Google Scholar 

  14. Mayer IA, Arteaga CL. The PI3K/AKT Pathway as a Target for Cancer Treatment. Annu Rev Med. 2016;67:11–28.

    Article  CAS  Google Scholar 

  15. Toker A, Rameh L. PIPPing on AKT1: how Many Phosphatases Does It Take to Turn off PI3K? Cancer Cell. 2015;28:143–5.

    Article  CAS  Google Scholar 

  16. Manning BD, Toker A. AKT/PKB Signaling: navigating the Network. Cell. 2017;169:381–405.

    Article  CAS  Google Scholar 

  17. Wong K, van der Weyden L, Schott CR, Foote A, Constantino-Casas F, Smith S, et al. Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma. Nat Commun. 2019;10:353.

    Article  CAS  Google Scholar 

  18. Friese A, Faesen AC, Huis in ‘t Veld PJ, Fischbock J, Prumbaum D, Petrovic A, et al. Molecular requirements for the inter-subunit interaction and kinetochore recruitment of SKAP and Astrin. Nat Commun. 2016;7:11407.

    Article  CAS  Google Scholar 

  19. Kern DM, Monda JK, Su KC, Wilson-Kubalek EM, Cheeseman IM. Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80. Elife. 2017;6:e26866.

  20. Kern DM, Nicholls PK, Page DC, Cheeseman IM. A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends. J Cell Biol. 2016;213:315–28.

    Article  CAS  Google Scholar 

  21. Qin B, Cao D, Wu H, Mo F, Shao H, Chu J, et al. Phosphorylation of SKAP by GSK3beta ensures chromosome segregation by a temporal inhibition of Kif2b activity. Sci Rep. 2016;6:38791.

    Article  CAS  Google Scholar 

  22. Dunsch AK, Linnane E, Barr FA, Gruneberg U. The astrin-kinastrin/SKAP complex localizes to microtubule plus ends and facilitates chromosome alignment. J Cell Biol. 2011;192:959–68.

    Article  CAS  Google Scholar 

  23. Albers P, Park SI, Niegisch G, Fechner G, Steiner U, Lehmann J, et al. Randomized phase III trial of 2nd line gemcitabine and paclitaxel chemotherapy in patients with advanced bladder cancer: short-term versus prolonged treatment [German Association of Urological Oncology (AUO) trial AB 20/99]. Ann Oncol. 2011;22:288–94.

    Article  CAS  Google Scholar 

  24. Mini E, Nobili S, Caciagli B, Landini I, Mazzei T. Cellular pharmacology of gemcitabine. Ann Oncol. 2006;17(Suppl 5):v7–12.

    Article  Google Scholar 

  25. Houede N, Pourquier P. Targeting the genetic alterations of the PI3K-AKT-mTOR pathway: its potential use in the treatment of bladder cancers. Pharm Ther. 2015;145:1–18.

    Article  CAS  Google Scholar 

  26. Li W, Yue F, Dai Y, Shi B, Xu G, Jiang X, et al. Suppressor of hepatocellular carcinoma RASSF1A activates autophagy initiation and maturation. Cell Death Differ. 2019;26:1379–95.

    Article  CAS  Google Scholar 

  27. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785–9.

    Article  CAS  Google Scholar 

  28. Kaidanovich-Beilin O, Woodgett JR. GSK-3: functional Insights from Cell Biology and Animal Models. Front Mol Neurosci. 2011;4:40.

    Article  CAS  Google Scholar 

  29. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  Google Scholar 

  30. van Rhijn BW, Burger M, Lotan Y, Solsona E, Stief CG, Sylvester RJ, et al. Recurrence and progression of disease in non-muscle-invasive bladder cancer: from epidemiology to treatment strategy. Eur Urol. 2009;56:430–42.

    Article  Google Scholar 

  31. Shelley MD, Jones G, Cleves A, Wilt TJ, Mason MD, Kynaston HG. Intravesical gemcitabine therapy for non-muscle invasive bladder cancer (NMIBC): a systematic review. BJU Int. 2012;109:496–505.

    Article  CAS  Google Scholar 

  32. Bergman AM, Pinedo HM, Peters GJ. Determinants of resistance to 2’,2’-difluorodeoxycytidine (gemcitabine). Drug Resist Updat. 2002;5:19–33.

    Article  CAS  Google Scholar 

  33. van der Vos KE, Coffer PJ. The extending network of FOXO transcriptional target genes. Antioxid Redox Signal. 2011;14:579–92.

    Article  Google Scholar 

  34. Webb AE, Brunet A. FOXO transcription factors: key regulators of cellular quality control. Trends Biochem Sci. 2014;39:159–69.

    Article  CAS  Google Scholar 

  35. Lee CS, Bhaduri A, Mah A, Johnson WL, Ungewickell A, Aros CJ, et al. Recurrent point mutations in the kinetochore gene KNSTRN in cutaneous squamous cell carcinoma. Nat Genet. 2014;46:1060–2.

    Article  CAS  Google Scholar 

  36. Xiong Y, Yuan L, Chen S, Xu H, Peng T, Ju L, et al. WFDC2 suppresses prostate cancer metastasis by modulating EGFR signaling inactivation. Cell Death Dis. 2020;11:537.

    Article  CAS  Google Scholar 

  37. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008;9:559.

    Article  Google Scholar 

  38. Liu B, Huang G, Zhu H, Ma Z, Tian X, Yin L, et al. Analysis of gene coexpression network reveals prognostic significance of CNFN in patients with head and neck cancer. Oncol Rep. 2019;41:2168–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  Google Scholar 

  40. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.

    Article  CAS  Google Scholar 

  41. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge thank Dr Xiaoling Li from NIEHS for critical editing during the preparation of this paper. The excellent technical assistance of Ms Yayun Fang and Ms Danni Shan is gratefully acknowledged. We would like to acknowledge the the TCGA databases for free use. This work was supported by the Improvement Project for Theranostic ability on Difficulty miscellaneous disease (Tumor) from National Health Commission of China (ZLYNXM202006) and National Natural Science Foundation of China to XW (81772730), LJ (31900902) and GW (81902603).

Author information

Authors and Affiliations

Authors

Contributions

YX, LJ, YX and XW designed the experiments and wrote the paper. LY analyzed the data. YX, LJ, LY, GW, and YX revised the paper. HX and TP assisted with the mouse experiments and YL performed additional experiments. YX and XW conceived the study and coordinated the work.

Corresponding authors

Correspondence to Yu Xiao or Xinghuan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Ju, L., Yuan, L. et al. KNSTRN promotes tumorigenesis and gemcitabine resistance by activating AKT in bladder cancer. Oncogene 40, 1595–1608 (2021). https://doi.org/10.1038/s41388-020-01634-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01634-z

  • Springer Nature Limited

This article is cited by

Navigation