Skip to main content

Advertisement

Log in

TIMP1 overexpression mediates resistance of MCF-7 human breast cancer cells to fulvestrant and down-regulates progesterone receptor expression

  • Research Article
  • Published:
Tumor Biology

Abstract

High levels of Tissue Inhibitor of Metalloproteinases-1 (TIMP1) are associated with poor prognosis, reduced response to chemotherapy, and, potentially, also poor response to endocrine therapy in breast cancer patients. Our objective was to further investigate the hypothesis that TIMP1 is associated with endocrine sensitivity. We established a panel of 11 MCF-7 subclones with a wide range of TIMP1 mRNA and protein expression levels. Cells with high expression of TIMP1 versus low TIMP1 displayed significantly reduced sensitivity to the antiestrogen fulvestrant (ICI 182,780, Faslodex®), while TIMP1 levels did not influence the sensitivity to 4-hydroxytamoxifen. An inverse correlation between expression of the progesterone receptor and TIMP1 was found, but TIMP1 levels did not correlate with estrogen receptor levels or growth-promoting effects of estrogen (estradiol, E2). Additionally, the effects of fulvestrant, 4-hydroxytamoxifen, or estrogen on estrogen receptor expression were not associated with TIMP1 levels. Gene expression analyses revealed associations between expression of TIMP1 and genes involved in metabolic pathways, epidermal growth factor receptor 1/cancer signaling pathways, and cell cycle. Gene and protein expression analyses showed no general defects in estrogen receptor signaling except from lack of progesterone receptor expression and estrogen inducibility in clones with high TIMP1. The present study suggests a relation between high expression level of TIMP1 and loss of progesterone receptor expression combined with fulvestrant resistance. Our findings in vitro may have clinical implications as the data suggest that high tumor levels of TIMP1 may be a predictive biomarker for reduced response to fulvestrant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Reference

  1. Nawaz Z, Stancel GM, Hyder SM. The pure antiestrogen ICI 182,780 inhibits progestin-induced transcription. Cancer Res. 1999;59:372–6.

    PubMed  CAS  Google Scholar 

  2. Rosenberg Zand RS, Grass L, Magklara A, Jenkins DJ, Diamandis EP. Is ICI 182,780 an antiprogestin in addition to being an antiestrogen? Breast Cancer Res Treat. 2000;60:1–8.

    Article  PubMed  CAS  Google Scholar 

  3. Hyder SM, Stancel GM. Inhibition of progesterone-induced VEGF production in human breast cancer cells by the pure antiestrogen ICI 182,780. Cancer Lett. 2002;181:47–53.

    Article  PubMed  CAS  Google Scholar 

  4. Davies C, Godwin J, Gray R, Clarke M, Cutter D, Darby S, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet. 2011;378:771–84.

    PubMed  CAS  Google Scholar 

  5. Zilli M, Grassadonia A, Tinari N, Di GA, Gildetti S, Giampietro J, et al. Molecular mechanisms of endocrine resistance and their implication in the therapy of breast cancer. Biochim Biophys Acta. 2009;1795:62–81.

    PubMed  CAS  Google Scholar 

  6. Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer. Annu Rev Med. 2011;62:233–47.

    Article  PubMed  CAS  Google Scholar 

  7. Ali S, Coombes RC. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer. 2002;2:101–12.

    Article  PubMed  Google Scholar 

  8. Wurtz SO, Schrohl AS, Sorensen NM, Lademann U, Christensen IJ, Mouridsen H, et al. Tissue inhibitor of metalloproteinases-1 in breast cancer. Endocr Relat Cancer. 2005;12:215–27.

    Article  PubMed  CAS  Google Scholar 

  9. Wurtz SO, Schrohl AS, Mouridsen H, Brunner N. TIMP-1 as a tumor marker in breast cancer—an update. Acta Oncol. 2008;47:580–90.

    Article  PubMed  Google Scholar 

  10. Jung KK, Liu XW, Chirco R, Fridman R, Kim HR. Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. EMBO J. 2006;25:3934–42.

    Article  PubMed  CAS  Google Scholar 

  11. Fu ZY, Lv JH, Ma CY, Yang DP, Wang T. Tissue inhibitor of metalloproteinase-1 decreased chemosensitivity of MDA-435 breast cancer cells to chemotherapeutic drugs through the PI3K/AKT/NF-small ka, CyrillicB pathway. Biomed Pharmacother. 2011;65:163–7.

    Article  PubMed  CAS  Google Scholar 

  12. Schrohl AS, Holten-Andersen MN, Peters HA, Look MP, et al. Tumor tissue levels of tissue inhibitor of metalloproteinase-1 as a prognostic marker in primary breast cancer. Clin Cancer Res. 2004;10:2289–98.

    Article  PubMed  CAS  Google Scholar 

  13. Jiang Y, Goldberg ID, Shi YE. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene. 2002;21:2245–52.

    Article  PubMed  CAS  Google Scholar 

  14. Willemoe GL, Hertel PB, Bartels A, Jensen MB, Balslev E, Rasmussen BB, et al. Lack of TIMP-1 tumour cell immunoreactivity predicts effect of adjuvant anthracycline-based chemotherapy in patients (n = 647) with primary breast cancer. A Danish Breast Cancer Cooperative Group Study. Eur J Cancer. 2009;45:2528–36.

    Article  PubMed  CAS  Google Scholar 

  15. Schrohl AS, Meijer-van Gelder ME, Holten-Andersen MN, Christensen IJ, Look MP, Mouridsen HT, et al. Primary tumor levels of tissue inhibitor of metalloproteinases-1 are predictive of resistance to chemotherapy in patients with metastatic breast cancer. Clin Cancer Res. 2006;12:7054–8.

    Article  PubMed  CAS  Google Scholar 

  16. Klintman M, Ornbjerg WS, Christensen IJ, Braemer HP, Ferno M, Malmberg M, et al. Association between tumor tissue TIMP-1 levels and objective response to first-line chemotherapy in metastatic breast cancer. Breast Cancer Res Treat. 2010;121:365–71.

    Article  PubMed  CAS  Google Scholar 

  17. Lipton A, Ali SM, Leitzel K, Demers L, Evans DB, Hamer P, et al. Elevated plasma tissue inhibitor of metalloproteinase-1 level predicts decreased response and survival in metastatic breast cancer. Cancer. 2007;109:1933–9.

    Article  PubMed  CAS  Google Scholar 

  18. Lipton A, Leitzel K, Chaudri-Ross HA, Evans DB, Ali SM, Demers L, et al. Serum TIMP-1 and response to the aromatase inhibitor letrozole versus tamoxifen in metastatic breast cancer. J Clin Oncol. 2008;26:2653–8.

    Article  PubMed  CAS  Google Scholar 

  19. Bjerre C, Knoop A, Bjerre K, Larsen MS, Henriksen KL, Lyng MB, et al. Association of tissue inhibitor of metalloproteinases-1 and Ki67 in estrogen receptor positive breast cancer. Acta Oncol. 2013;52:82–90.

    Article  PubMed  CAS  Google Scholar 

  20. Neri A, Megha T, Bettarini F, Tacchini D, Mastrogiulio MG, Marrelli D, et al. Is tissue inhibitor of metalloproteinase-1 a new prognosticator for breast cancer? An analysis of 266 cases. Hum Pathol. 2012;43:1184–91.

    Article  PubMed  CAS  Google Scholar 

  21. Jaattela M, Benedict M, Tewari M, Shayman JA, Dixit VM. Bcl-x and Bcl-2 inhibit TNF and Fas-induced apoptosis and activation of phospholipase A2 in breast carcinoma cells. Oncogene. 1995;10:2297–305.

    PubMed  CAS  Google Scholar 

  22. Holten-Andersen MN, Murphy G, Nielsen HJ, Pedersen AN, Christensen IJ, Hoyer-Hansen G, et al. Quantitation of TIMP-1 in plasma of healthy blood donors and patients with advanced cancer. Br J Cancer. 1999;80:495–503.

    Article  PubMed  CAS  Google Scholar 

  23. Lundholt BK, Briand P, Lykkesfeldt AE. Growth inhibition and growth stimulation by estradiol of estrogen receptor transfected human breast epithelial cell lines involve different pathways. Breast Cancer Res Treat. 2001;67:199–214.

    Article  PubMed  CAS  Google Scholar 

  24. Sorensen IV, Fenger C, Winther H, Foged NT, Lademann U, Brunner N, et al. Characterization of anti-TIMP-1 monoclonal antibodies for immunohistochemical localization in formalin-fixed, paraffin-embedded tissue. J Histochem Cytochem. 2006;54:1075–86.

    Article  PubMed  Google Scholar 

  25. Smyth GK. Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W, editors. Bioinformatics and computational biology solutions using R and Bioconductor. New York: Springer; 2005. p. 397–420.

    Chapter  Google Scholar 

  26. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80.

    Article  PubMed  Google Scholar 

  27. Smyth GK, Speed T. Normalization of cDNA microarray data. Methods. 2003;31:265–73.

    Article  PubMed  CAS  Google Scholar 

  28. Wilkinson GR, Rogers CE. Symbolic descriptions of factorial models for analysis of variance. Applied Statistics. 1973;22:392–9.

    Article  Google Scholar 

  29. Chambers JM. Linear models. In: Chambers JM, Hastie TJ, editors. Statistical models in S. Pacific Grove: Wadsworth & Brooks/Cole; 1992. p. 95–144.

  30. Ochsner SA, Steffen DL, Hilsenbeck SG, Chen ES, Watkins C, McKenna NJ. GEMS (Gene Expression MetaSignatures), a Web resource for querying meta-analysis of expression microarray datasets: 17beta-estradiol in MCF-7 cells. Cancer Res. 2009;69:23–6.

    Article  PubMed  CAS  Google Scholar 

  31. Lage K, Karlberg EO, Storling ZM, Olason PI, Pedersen AG, Rigina O, et al. A human phenome–interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol. 2007;25:309–16.

    Article  PubMed  CAS  Google Scholar 

  32. Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39:D691–7.

    Article  PubMed  CAS  Google Scholar 

  33. Kandasamy K, Mohan SS, Raju R, Keerthikumar S, Kumar GS, Venugopal AK, et al. NetPath: a public resource of curated signal transduction pathways. Genome Biol. 2010;11:R3.

    Article  PubMed  Google Scholar 

  34. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–14.

    Article  PubMed  CAS  Google Scholar 

  35. Latendresse M, Paley S, Karp PD. Browsing metabolic and regulatory networks with BioCyc. Methods Mol Biol. 2012;804:197–216.

    Article  PubMed  CAS  Google Scholar 

  36. Davis AP, Murphy CG, Saraceni-Richards CA, Rosenstein MC, Wiegers TC, Mattingly CJ. Comparative Toxicogenomics Database: a knowledgebase and discovery tool for chemical–gene–disease networks. Nucleic Acids Res. 2009;37:D786–92.

    Article  PubMed  CAS  Google Scholar 

  37. Lykkesfeldt AE, Larsen SS, Briand P. Human breast cancer cell lines resistant to pure anti-estrogens are sensitive to tamoxifen treatment. Int J Cancer. 1995;61:529–34.

    Article  PubMed  CAS  Google Scholar 

  38. Lapidus RG, Ferguson AT, Ottaviano YL, Parl FF, Smith HS, Weitzman SA, et al. Methylation of estrogen and progesterone receptor gene 5' CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin Cancer Res. 1996;2:805–10.

    PubMed  CAS  Google Scholar 

  39. Pathiraja TN, Shetty PB, Jelinek J, He R, Hartmaier R, Margossian AL, et al. Progesterone receptor isoform-specific promoter methylation: association of PRA promoter methylation with worse outcome in breast cancer patients. Clin Cancer Res. 2011;17:4177–86.

    Article  PubMed  CAS  Google Scholar 

  40. Long X, Nephew KP. Fulvestrant (ICI 182,780)-dependent interacting proteins mediate immobilization and degradation of estrogen receptor-alpha. J Biol Chem. 2006;281:9607–15.

    Article  PubMed  CAS  Google Scholar 

  41. Seo HS, Larsimont D, Querton G, El KA, Laios I, Legros N, et al. Estrogenic and anti-estrogenic regulation of estrogen receptor in MCF-7 breast-cancer cells: comparison of immunocytochemical data with biochemical measurements. Int J Cancer. 1998;78:760–5.

    Article  PubMed  CAS  Google Scholar 

  42. Osipo C, Gajdos C, Liu H, Chen B, Jordan VC. Paradoxical action of fulvestrant in estradiol-induced regression of tamoxifen-stimulated breast cancer. J Natl Cancer Inst. 2003;95:1597–608.

    Article  PubMed  CAS  Google Scholar 

  43. Krell J, Januszewski A, Yan K, Palmieri C. Role of fulvestrant in the management of postmenopausal breast cancer. Expert Rev Anticancer Ther. 2011;11:1641–52.

    Article  PubMed  CAS  Google Scholar 

  44. Bartsch R, Wenzel C, Altorjai G, Pluschnig U, Mader RM, Gnant M, et al. Her2 and progesterone receptor status are not predictive of response to fulvestrant treatment. Clin Cancer Res. 2007;13:4435–9.

    Article  PubMed  CAS  Google Scholar 

  45. Di LA, Jerusalem G, Petruzelka L, Torres R, Bondarenko IN, Khasanov R, et al. Results of the CONFIRM phase III trial comparing fulvestrant 250 mg with fulvestrant 500 mg in postmenopausal women with estrogen receptor-positive advanced breast cancer. J Clin Oncol. 2010;28:4594–600.

    Article  Google Scholar 

  46. Ohno S, Rai Y, Iwata H, Yamamoto N, Yoshida M, Iwase H, et al. Three dose regimens of fulvestrant in postmenopausal Japanese women with advanced breast cancer: results from a double-blind, phase II comparative study (FINDER1). Ann Oncol. 2010;21:2342–7.

    Article  PubMed  CAS  Google Scholar 

  47. Pritchard KI, Rolski J, Papai Z, Mauriac L, Cardoso F, Chang J, et al. Results of a phase II study comparing three dosing regimens of fulvestrant in postmenopausal women with advanced breast cancer (FINDER2). Breast Cancer Res Treat. 2010;123:453–61.

    Article  PubMed  CAS  Google Scholar 

  48. Robertson JF, Llombart-Cussac A, Rolski J, Feltl D, Dewar J, Macpherson E, et al. Activity of fulvestrant 500 mg versus anastrozole 1 mg as first-line treatment for advanced breast cancer: results from the FIRST study. J Clin Oncol. 2009;27:4530–5.

    Article  PubMed  CAS  Google Scholar 

  49. Bigelow RL, Williams BJ, Carroll JL, Daves LK, Cardelli JA. TIMP-1 overexpression promotes tumorigenesis of MDA-MB-231 breast cancer cells and alters expression of a subset of cancer promoting genes in vivo distinct from those observed in vitro. Breast Cancer Res Treat. 2009;117:31–44.

    Article  PubMed  CAS  Google Scholar 

  50. Petz LN, Ziegler YS, Schultz JR, Nardulli AM. Fos and Jun inhibit estrogen-induced transcription of the human progesterone receptor gene through an activator protein-1 site. Mol Endocrinol. 2004;18:521–32.

    Article  PubMed  CAS  Google Scholar 

  51. Wang MM, Traystman RJ, Hurn PD, Liu T. Non-classical regulation of estrogen receptor-alpha by ICI182,780. J Steroid Biochem Mol Biol. 2004;92:51–62.

    Article  PubMed  CAS  Google Scholar 

  52. Jakacka M, Ito M, Weiss J, Chien PY, Gehm BD, Jameson JL. Estrogen receptor binding to DNA is not required for its activity through the nonclassical AP1 pathway. J Biol Chem. 2001;276:13615–21.

    PubMed  CAS  Google Scholar 

  53. McDevitt MA, Glidewell-Kenney C, Jimenez MA, Ahearn PC, Weiss J, Jameson JL, et al. New insights into the classical and non-classical actions of estrogen: evidence from estrogen receptor knock-out and knock-in mice. Mol Cell Endocrinol. 2008;290:24–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None

Funding and acknowledgments

This work was financially supported by the Danish National Research Foundation, A Race Against Breast Cancer, The Danish Cancer Society, and “Fonden til fremme af klinisk eksperimentel cancerforskning specielt vedrørende cancer mammae”. Anne-Sofie Schrohl is supported by The Danish Council for Independent Research, Medical Sciences.

Laurent Gautier (senior researcher, PhD, engineer, head of DTU Multi-Assay Core), Vibeke Jensen and Birgitte Sander Nielsen (technicians, Institute of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, and Sino-Danish Breast Cancer Research Centre), and Gertrud Elisabeth Krarup (centre coordinator, Sino-Danish Breast Cancer Research Centre) are all thanked for their valuable contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Stenvang.

Additional information

CB, LV, and KCB contributed equally to this work and should be regarded as joint first authors. ASR and JS contributed equally and should be regarded as joint senior authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjerre, C., Vinther, L., Belling, K.C. et al. TIMP1 overexpression mediates resistance of MCF-7 human breast cancer cells to fulvestrant and down-regulates progesterone receptor expression. Tumor Biol. 34, 3839–3851 (2013). https://doi.org/10.1007/s13277-013-0969-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0969-7

Keywords

Navigation