Skip to main content

Advertisement

Log in

Inhibition of SCAMP1 suppresses cell migration and invasion in human pancreatic and gallbladder cancer cells

  • Research Article
  • Published:
Tumor Biology

Abstract

Lymph node (LN) metastasis is one of the most important risk factors for the prognosis of pancreatic cancer. This study aimed to identify novel LN metastasis-associated markers and therapeutic targets for pancreatic and gallbladder cancers. DNA microarray analysis was carried out to identify genes differentially expressed between 17 pancreatic cancer tissues with LN metastasis and 17 pancreatic cancer tissues without LN metastasis. The expression of LZIC, FXR, SCAMP1, and SULT1E1 is significantly higher in pancreatic cancer tissues with LN metastasis than in pancreatic cancer tissues without LN metastasis. We recently reported that FXR plays an important role in LN metastasis of pancreatic cancer, and in this study, we selected the secretory carrier membrane protein 1 (SCAMP1) gene. To determine that function of the SCAMP1 gene, we examined the effects of SCAMP1 knockdown on pancreatic and gallbladder cancer proliferation, migration, and invasion using SCAMP1 small interfering RNA (siRNA) and the activity of vascular endothelial growth factor (VEGF) was measured by enzyme-linked immunosorbent assay. SCAMP1 overexpression is associated with LN metastasis in pancreatic cancer patients. The siRNA-mediated downregulation of SCAMP1 resulted in a marked reduction in cell migration and invasion, but not proliferation in MIA-PaCa2, PANC-1, TGBC-1, and TGBC-2 cells. In addition, downregulation of SCAMP1 inhibited VEGF levels of conditioned medium from SCAMP1 siRNA-transfected cells. These results suggest that downregulation of SCAMP1 could be a potential therapeutic target for patients with pancreatic and gallbladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, et al. Cancer statistics. CA Cancer J Clin. 2006;56(2):106–30.

    Article  PubMed  Google Scholar 

  2. Mao C, Domenico DR, Kim K, Hanson DJ, Howard JM. Observations on the developmental patterns and the consequences of pancreatic exocrine adenocarcinoma. Findings of 154 autopsies. Arch Surg. 1995;130:125–34.

    Article  CAS  PubMed  Google Scholar 

  3. Maeda S, Shinchi H, Kurahara H, Mataki Y, Noma H, Maemura K, et al. Clinical significance of midkine expression in pancreatic head carcinoma. Br J Cancer. 2007;97:405–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Andren-Sandberg A. Diagnosis and management of gallbladder cancer. N Am J Med Sci. 2012;4(7):293–9.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Lee JY, Lee KT, Lee JK, Lee KH, Jang KT, Heo JS, et al. Farnesoid X receptor, overexpressed in pancreatic cancer with lymph node metastasis promotes cell migration and invasion. Br J Cancer. 2011;104(6):1027–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Brand SH, Laurie SM, Mixon MB, Castle JD. Secretory carrier membrane proteins 31–35 define a common protein composition among secretory carrier membranes. J Biol Chem. 1991;266:18949–57.

    CAS  PubMed  Google Scholar 

  7. Cameron RS, Cameron PL, Castle JD. A common spectrum of polypeptides occurs in secretion granule membranes of different exocrine glands. J Cell Biol. 1986;103:1299–313.

    Article  CAS  PubMed  Google Scholar 

  8. Brand SH, Castle JD. SCAMP 37, a new marker within the general cell surface recycling system. EMBO J. 1993;12:3753–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Laurie SM, Cain CC, Lienhard GE, Castle JD. The glucose transporter GluT4 and secretory carrier membrane proteins (SCAMPs) colocalize in rat adipocytes and partially segregate during insulin stimulation. J Biol Chem. 1993;268:19110–7.

    CAS  PubMed  Google Scholar 

  10. Liao H, Zhang J, Shestopal S, Szabo G, Castle A, Castle D. Nonredundant function of secretory carrier membrane protein isoforms in dense core vesicle exocytosis. Am J Physiol Cell Physiol. 2008;294(3):C797–809.

    Article  CAS  PubMed  Google Scholar 

  11. Castle A, Castle D. Ubiquitously expressed secretory carrier membrane proteins (SCAMPs) 1–4 mark different pathways and exhibit limited constitutive trafficking to and from the cell surface. J Cell Sci. 2005;118:3769–80.

    Article  CAS  PubMed  Google Scholar 

  12. Biewenga P, Buist MR, Moerland PD, Ver Loren van Themaat E, van Kampen AH, ten Kate FJ, et al. Gene expression in early stage cervical cancer. Gynecol Oncol. 2008;108:520–6.

    Article  CAS  PubMed  Google Scholar 

  13. Kim JH, Lee JY, Lee KT, Lee KH, Jang KT, Heo JS, et al. RGS16 and FosB underexpressed in pancreatic cancer with lymph node metastasis promote tumor progression. Tumour Biol. 2010;31:541–8.

    Article  CAS  PubMed  Google Scholar 

  14. Kim K, Kim KH, Cho HK, Kim HY, Kim HH, Cheong J. SHP (small heterodimer partner) suppresses the transcriptional activity and nuclear localization of Hedgehog signaling protein Gli1. Biochem J. 2010;427:413–22.

    Article  CAS  PubMed  Google Scholar 

  15. Aghdassi A, Phillips P, Dudeja V, Dhaulakhandi D, Sharif R, Dawra R, et al. Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Res. 2007;67:616–25.

    Article  CAS  PubMed  Google Scholar 

  16. Ziyad S, Iruela-Arispe ML. Molecular mechanisms of tumor angiogenesis. Genes Cancer. 2011;2(12):1085–96.

    Article  PubMed Central  PubMed  Google Scholar 

  17. He HZ, Wang N, Zhang J, Zheng L, Zhang YM. Tas13D inhibits growth of SMMC-7721 cell via suppression VEGF and EGF expression. Asian Pac J Cancer Prev. 2012;13(5):2009–14.

    Article  PubMed  Google Scholar 

  18. Min BS, Kim NK, Jeong HC, Chung HC. High levels of serum VEGF and TIMP-1 are correlated with colon cancer liver metastasis and intrahepatic recurrence after liver resection. Oncol Lett. 2012;4(1):123–30.

    PubMed Central  PubMed  Google Scholar 

  19. Singleton DR, Wu TT, Castle JD. Three mammalian SCAMPs (secretory carrier membrane proteins) are highly related products of distinct genes having similar subcellular distributions. J Cell Sci. 1997;110:2099–107.

    CAS  PubMed  Google Scholar 

  20. Fernandez-Chacon R, Sudhof TC. Novel SCAMPs lacking NPF repeats: ubiquitous and synaptic vesicle-specific forms implicate SCAMPs in multiple membrane-trafficking functions. J Neurosci. 2000;20:7941–50.

    CAS  PubMed  Google Scholar 

  21. Lam SK, Siu CL, Hillmer S, Jang S, An G, Robinson DG, et al. Rice SCAMP1 defines clathrin-coated, trans-Golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell. 2007;19(1):296–319.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Fernandez-Chacon R, Alvarez de Toledo G, Hammer RE, Sudhof TC. Analysis of SCAMP1 function in secretory vesicle exocytosis by means of gene targeting in mice. J Biol Chem. 1999;274:32551–4.

    Article  CAS  PubMed  Google Scholar 

  23. Sun HC, Qiu ZJ, Liu J, Sun J, Jiang T, Huang KJ, et al. Expression of hypoxia-inducible factor-1 alpha and associated proteins in pancreatic ductal adenocarcinoma and their impact on prognosis. Int J Oncol. 2007;30:1359–67.

    CAS  PubMed  Google Scholar 

  24. Wu TT, Castle JD. Tyrosine phosphorylation of selected secretory carrier membrane proteins, SCAMP1 and SCAMP3, and association with the EGF receptor. Mol Biol Cell. 1998;9:1661–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Sun P, Yu H, Zhang WQ, Hu M, Lv R. Lentivirus-mediated siRNA targeting VEGF inhibits gastric cancer growth in vivo. Oncol Rep. 2012;28(5):1687–92.

    CAS  PubMed  Google Scholar 

  26. Dobrila-Dintinjana R, Vanis N, Dintinjana M, Radić M. Etiology and oncogenesis of pancreatic carcinoma. Coll Antropol. 2012;36(3):1063–7.

    PubMed  Google Scholar 

  27. Wang YY, Cui QC. Recent advances in gene change of pancreatic cancer. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2004;26(1):79–82.

    CAS  PubMed  Google Scholar 

  28. Shin SH, Kim SC, Hong SM, Kim YH, Song KB, Park KM, et al. Genetic alterations of K-ras, p53, c-erbB-2, and DPC4 in pancreatic ductal adenocarcinoma and their correlation with patient survival. Pancreas. 2013;42(2):216–22.

    Article  CAS  PubMed  Google Scholar 

  29. Scarpa A, Orlandini S, Moore PS, Lemoine NR, Beghelli S, Baron A, et al. Dpc4 is expressed in virtually all primary and metastatic pancreatic endocrine carcinomas. Virchows Arch. 2002;440(2):155–9.

    Article  CAS  PubMed  Google Scholar 

  30. Schwarte-Waldhoff I, Volpert OV, Bouck NP, Sipos B, Hahn SA, Klein-Scory S, et al. Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci U S A. 2000;97(17):9624–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Samsung Biomedical Research Institute grant, # SBRI C-B1-118-2.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Taek Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Lee, K.T., Lee, J.Y. et al. Inhibition of SCAMP1 suppresses cell migration and invasion in human pancreatic and gallbladder cancer cells . Tumor Biol. 34, 2731–2739 (2013). https://doi.org/10.1007/s13277-013-0825-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0825-9

Keywords

Navigation