Skip to main content

Advertisement

Log in

Loss of WIF-1 and Wnt5a expression is related to aggressiveness of sporadic breast cancer in Tunisian patients

  • Research Article
  • Published:
Tumor Biology

Abstract

Activation of the Wnt/β-catenin signaling pathway is common in various human cancers. The aim of this study was to investigate the expression of 2 members of the Wnt family (WIF-1 and Wnt5a) in sporadic and hereditary breast cancer tissues. WIF-1, is a secreted antagonist that binds Wnt ligands, and therefore inhibits the canonical Wnt/β-catenin pathway. Wnt5a is one of the members of the noncanonical Wnt family that mainly acts through calcium signaling pathway. The expression of WIF-1 was analyzed by methylation-specific PCR and RT-PCR, and the level of Wnt5a ligand was quantified by RT-QPCR in breast cancer tissues. Methylation of WIF-1 was detected in 71.3 % and 81.8 % of sporadic and hereditary cases, respectively. Aberrant methylation of WIF-1 was associated with advanced TNM stage and triple negative cases in sporadic breast carcinoma (p = 0.001 and p = 0.037, respectively). In hereditary cases, methylation of WIF-1 correlated with age at diagnosis (p = 0.027) and p53 status (p = 0.035). Regarding patients’ survival, WIF-1 methylated promoter conferred a reduced overall survival rate, and particularly in a group of patients with advanced TNM stage (p log rank = 0.006). Furthermore, aberrant CpG methylation of the WIF-1 promoter was significantly associated with transcriptional silencing of this tumor suppressor gene in sporadic breast cancer tissues (p = 0.036). On the other hand, in sporadic tumor tissues, the level of Wnt5a mRNA was significantly lower compared to normal tissues (p = 0.031) and lower still in those showing more aggressive behavior, suggesting that Wnt5a, a ligand involved in the noncanonical Wnt/β-catenin pathway, could act as a tumor suppressor gene in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997;11:3286–305.

    Article  PubMed  CAS  Google Scholar 

  2. Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837–51.

    PubMed  CAS  Google Scholar 

  3. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997;275:1787–90.

    Article  PubMed  CAS  Google Scholar 

  4. Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell. 2002;1:279–88.

    Article  PubMed  CAS  Google Scholar 

  5. Uematsu K, He B, You L, Xu Z, McCormick F, Jablons DM. Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene. 2003;22:7218–21.

    Article  PubMed  CAS  Google Scholar 

  6. Lu D, Zhao Y, Tawatao R, Cottam HB, Sen M, Leoni LM, et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2004;101:3118–23.

    Article  PubMed  CAS  Google Scholar 

  7. Fendri A, Khabir A, Hadri-Guiga B, Sellami-Boudawara T, Daoud J, Frikha M, et al. Epigenetic alteration of the Wnt inhibitory factor-1 promoter is common and occurs in advanced stage of Tunisian nasopharyngeal carcinoma. Cancer Invest. 2010;28:896–903.

    Article  PubMed  CAS  Google Scholar 

  8. Rhee C-S, Sen M, Lu D, Wu C, Leoni L, Rubin J, et al. Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene. 2002;21:6598–605.

    Article  PubMed  CAS  Google Scholar 

  9. McDonald SL, Silver A. The opposing roles of Wnt-5a in cancer. Br J Cancer. 2009;101:209–14.

    Article  PubMed  CAS  Google Scholar 

  10. Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 2006;4:e115.

    Article  PubMed  Google Scholar 

  11. Huang C-L, Liu D, Nakano J, Ishikawa S, Kontani K, Yokomise H, et al. Wnt5a expression is associated with the tumor proliferation and the stromal vascular endothelial growth factor—an expression in non-small-cell lung cancer. J Clin Oncol. 2005;23:8765–73.

    Article  PubMed  Google Scholar 

  12. Lejeune S, Huguet EL, Hamby A, Poulsom R, Harris AL. Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin Cancer Res. 1995;1:215–22.

    PubMed  CAS  Google Scholar 

  13. Saitoh T, Mine T, Katoh M. Frequent up-regulation of WNT5A mRNA in primary gastric cancer. Int J Mol Med. 2002;9:515–9.

    PubMed  CAS  Google Scholar 

  14. Liang H, Chen Q, Coles AH, Anderson SJ, Pihan G, Bradley A, et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell. 2003;4:349–60.

    Article  PubMed  CAS  Google Scholar 

  15. Blanc E, Roux GL, Bénard J, Raguénez G. Low expression of Wnt-5a gene is associated with high-risk neuroblastoma. Oncogene. 2005;24:1277–83.

    Article  PubMed  CAS  Google Scholar 

  16. Leris ACA, Roberts TR, Jiang WG, Newbold RF, Mokbel K. WNT5A expression in human breast cancer. Anticancer Res. 2005;25:731–4.

    PubMed  CAS  Google Scholar 

  17. Kremenevskaja N, Von Wasielewski R, Rao AS, Schöfl C, Andersson T, Brabant G. Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene. 2005;24:2144–54.

    Article  PubMed  CAS  Google Scholar 

  18. Pukrop T, Binder C. The complex pathways of Wnt 5a in cancer progression. J Mol Med. 2008;86:259–66.

    Article  PubMed  CAS  Google Scholar 

  19. Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, et al. Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci USA. 2000;97:4262–6.

    Article  PubMed  CAS  Google Scholar 

  20. Ryo A, Nakamura M, Wulf G, Liou YC, Lu KP. Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat Cell Biol. 2001;3:793–801.

    Article  PubMed  CAS  Google Scholar 

  21. Chung GG, Zerkowski MP, Ocal IT, Dolled-Filhart M, Kang JY, Psyrri A, et al. Beta-catenin and p53 analyses of a breast carcinoma tissue microarray. Cancer. 2004;100:2084–92.

    Article  PubMed  CAS  Google Scholar 

  22. Furuuchi K, Tada M, Yamada H, Kataoka A, Furuuchi N, Hamada J, et al. Somatic mutations of the APC gene in primary breast cancers. Am J Pathol. 2000;156:1997–2005.

    Article  PubMed  CAS  Google Scholar 

  23. Ai L, Tao Q, Zhong S, Fields CR, Kim W-J, Lee MW, et al. Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis. 2006;27:1341–8.

    Article  PubMed  CAS  Google Scholar 

  24. Suzuki H, Toyota M, Carraway H, Caraway H, Gabrielson E, Ohmura T, et al. Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer. Br J Cancer. 2008;98:1147–56.

    Article  PubMed  CAS  Google Scholar 

  25. Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samos CH, et al. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature. 1999;398:431–6.

    Article  PubMed  CAS  Google Scholar 

  26. Mazieres J, He B, You L, Xu Z, Lee AY, Mikami I, et al. Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Res. 2004;64:4717–20.

    Article  PubMed  CAS  Google Scholar 

  27. Taniguchi H, Yamamoto H, Hirata T, Miyamoto N, Oki M, Nosho K, et al. Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene. 2005;24:7946–52.

    Article  PubMed  CAS  Google Scholar 

  28. Wissmann C, Wild PJ, Kaiser S, Roepcke S, Stoehr R, Woenckhaus M, et al. WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol. 2003;201:204–12.

    Article  PubMed  CAS  Google Scholar 

  29. Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 2003;5:367–77.

    Article  PubMed  CAS  Google Scholar 

  30. Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, Yang Y. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol. 2003;162:899–908.

    Article  PubMed  CAS  Google Scholar 

  31. Westfall TA, Brimeyer R, Twedt J, Gladon J, Olberding A, Furutani-Seiki M, et al. Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/beta-catenin activity. J Cell Biol. 2003;162:889–98.

    Article  PubMed  CAS  Google Scholar 

  32. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9.

    Article  PubMed  CAS  Google Scholar 

  33. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 1996;93:9821–6.

    Article  PubMed  CAS  Google Scholar 

  34. Karray-Chouayekh S, Trifa F, Khabir A, Boujelbane N, Sellami-Boudawara T, Daoud J, et al. Clinical significance of epigenetic inactivation of hMLH1 and BRCA1 in Tunisian patients with invasive breast carcinoma. J Biomed Biotechnol. 2009;2009:369129.

    Article  PubMed  Google Scholar 

  35. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30:e36.

    Article  PubMed  Google Scholar 

  36. Karim R, Tse G, Putti T, Scolyer R, Lee S. The significance of the Wnt pathway in the pathology of human cancers. Pathology. 2004;36:120–8.

    Article  PubMed  CAS  Google Scholar 

  37. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28.

    Article  PubMed  CAS  Google Scholar 

  38. Veeck J, Wild PJ, Fuchs T, Schüffler PJ, Hartmann A, Knüchel R, et al. Prognostic relevance of Wnt-inhibitory factor-1 (WIF1) and Dickkopf-3 (DKK3) promoter methylation in human breast cancer. BMC Cancer. 2009;9:217.

    Article  PubMed  Google Scholar 

  39. Alvarez C, Tapia T, Cornejo V, Fernandez W, Muñoz A, Camus M, et al. Silencing of tumor suppressor genes RASSF1A, SLIT2, and WIF1 by promoter hypermethylation in hereditary breast cancer. Mol Carcinog. 2012. doi:10.1002/mc.21881.

  40. Dejmek J, Dib K, Jönsson M, Andersson T. Wnt-5a and G-protein signaling are required for collagen-induced DDR1 receptor activation and normal mammary cell adhesion. Int J Cancer. 2003;103:344–51.

    Article  PubMed  CAS  Google Scholar 

  41. Jönsson M, Dejmek J, Bendahl P-O, Andersson T. Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res. 2002;62:409–16.

    PubMed  Google Scholar 

  42. Olson DJ, Gibo DM. Antisense wnt-5a mimics wnt-1-mediated C57MG mammary epithelial cell transformation. Exp Cell Res. 1998;241:134–41.

    Article  PubMed  CAS  Google Scholar 

  43. Roarty K, Baxley SE, Crowley MR, Frost AR, Serra R. Loss of TGF-beta or Wnt5a results in an increase in Wnt/beta-catenin activity and redirects mammary tumour phenotype. Breast Cancer Res. 2009;11:R19.

    Article  PubMed  Google Scholar 

  44. Medrek C, Landberg G, Andersson T, Leandersson K. Wnt-5a-CKI{alpha} signaling promotes {beta}-catenin/E-cadherin complex formation and intercellular adhesion in human breast epithelial cells. J Biol Chem. 2009;284:10968–79.

    Article  PubMed  CAS  Google Scholar 

  45. Surmann-Schmitt C, Widmann N, Dietz U, Saeger B, Eitzinger N, Nakamura Y, et al. Wif-1 is expressed at cartilage-mesenchyme interfaces and impedes Wnt3a-mediated inhibition of chondrogenesis. J Cell Sci. 2009;122:3627–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Tunisian Ministry of High Education and Scientific Research. We thank technicians at CHU Habib Bourguiba at Sfax—Tunisia for assistance.

Conflict of interest

We guarantee that there are no financial and personal relationships with other people or organizations that might pose a conflict of interest in connection with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raja Mokdad-Gargouri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trifa, F., Karray-Chouayekh, S., Jmal, E. et al. Loss of WIF-1 and Wnt5a expression is related to aggressiveness of sporadic breast cancer in Tunisian patients. Tumor Biol. 34, 1625–1633 (2013). https://doi.org/10.1007/s13277-013-0694-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0694-2

Keywords

Navigation