Skip to main content

Advertisement

Log in

The complex pathways of Wnt 5a in cancer progression

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

In contrast to the transforming members of the Wnt family, shown to be upregulated in many cancers, the role of Wnt 5a is still controversial. While it has been attributed a tumour suppressor function in some malignancies, there is increasing evidence of promigratory and proinvasive effects in others, mediated predominantly through the planar cell polarity pathway and activation of protein kinase C. Obviously, the outcome of an individual Wnt 5a signal is dependent on a multitude of variables, ranging from availability of receptors, downstream effectors, and inhibitors to external influences coming from the tumour microenvironment and the extracellular matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127:469–480

    Article  PubMed  CAS  Google Scholar 

  2. Nusse R (2005) Wnt signaling in disease and development. Cell Res 15:28–32

    Article  PubMed  CAS  Google Scholar 

  3. Wong GT, Gavin BJ, McMahon AP (1994) Differential transformation of mammary epithelial cells by Wnt genes. Mol Cell Biol 14:6278–6286

    PubMed  CAS  Google Scholar 

  4. Olson DJ, Papkoff J (1994) Regulated expression of Wnt family members during proliferation of C57mg mammary cells. Cell Growth Differ 5:197–206

    PubMed  CAS  Google Scholar 

  5. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    Article  PubMed  CAS  Google Scholar 

  6. Fodde R, Brabletz T (2007) Wnt/beta-catenin signaling in cancer stemness and malignant behaviour. Curr Opin Cell Biol 19:150–158

    Article  PubMed  CAS  Google Scholar 

  7. Wallingford JB, Habas R (2005) The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132:4421–4436

    Article  PubMed  CAS  Google Scholar 

  8. Wnt homepage (2007) http://www.stanford.edu/~rnusse/wntwindow.html

  9. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  PubMed  CAS  Google Scholar 

  10. Brabletz T, Jung A, Dag S, Hlubek F, Kirchner T (1999) β-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155:1033–1038

    PubMed  CAS  Google Scholar 

  11. Gradl D, Kühl M, Wedlich D (1999) The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Mol Cell Biol 19:5576–5587

    PubMed  CAS  Google Scholar 

  12. Slusarski DC, Corces VG, Moon RT (1997) Interaction of Wnt and a frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390:410–413

    Article  PubMed  CAS  Google Scholar 

  13. Pandur P, Maurus D, Kühl M (2002) Increasingly complex: new players enter the Wnt signaling network. Bioessays 24:881–884

    Article  PubMed  CAS  Google Scholar 

  14. Seifert JR, Mlodzik M (2007) Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 8:126–138

    Article  PubMed  CAS  Google Scholar 

  15. Jones C, Chen P (2007) Planar cell polarity signaling in vertebrates. Bioessays 29:120–132

    Article  PubMed  CAS  Google Scholar 

  16. Qian D, Jones C, Rzadzinska A, Mark S, Zhang X, Steel KP, Dai X, Chen P (2007) Wnt 5a functions in planar cell polarity regulation in mice. Dev Biol 306:121–133

    Article  PubMed  CAS  Google Scholar 

  17. Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, Yang Y (2003) Wnt 5a inhibits the canonical Wnt pathway by promoting GSK-3-independent . b. -catenin degradation. J Cell Biol 162:899–908

    Article  PubMed  CAS  Google Scholar 

  18. Westfall TA, Brimeyer R, Twedt J, Gladon J, Olberding A, Furutani-Seiki M, Slusarski DC (2003) Wnt 5a/pipetail fundctions in vertebrate axis formation as a negative regulator of Wnt/beta-catenin signaling. J Cell Biol 162:889–898

    Article  PubMed  CAS  Google Scholar 

  19. Oishi I, Suzuki H, Onishi N, Takada R, Kanai S, Ohkawara B, Koshida I, Suzuki K, Yamada G, Schwabe GC, Mundlos S, Shibuya H, Takada S, Minami Y (2003) The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8:645–654

    Article  PubMed  CAS  Google Scholar 

  20. Schambony A, Wedlich D (2007) Wnt-5a/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev Cell 5:779–792

    Article  Google Scholar 

  21. Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits . b. -catenin-TCF signaling depending on receptor context. PLoS Biol 4:570–582

    Article  CAS  Google Scholar 

  22. Chen RH, Ding VW, McCormick F (2000) Wnt signaling to . b. -catenin involves two interactive components, glycogen synthase kinase-3b inhibition and activation of protein kinase C. J Biol Chem 275:17894–17899

    Article  PubMed  CAS  Google Scholar 

  23. Nateri AS, Spencer-Dene B, Behrens A (2005) Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 437:281–285

    Article  PubMed  CAS  Google Scholar 

  24. He X, Saint-Jeannet JP, Wang Y, Nathans J, Dawid I, Varmus H (1997) A member of the frizzled protein family mediating axis induction by Wnt 5a. Science 275:1652–1654

    Article  PubMed  CAS  Google Scholar 

  25. Kawano Y, Kypta R (2003) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116:2627–2634

    Article  PubMed  CAS  Google Scholar 

  26. Niehrs C (2006) Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25:7469–7481

    Article  PubMed  CAS  Google Scholar 

  27. Burbelo P, Wellstein A, Pestell RG (2004) Altered Rho GTPase signaling pathways in breast cancer cells. Breast Cancer Res Treat 84:43–48

    Article  PubMed  CAS  Google Scholar 

  28. Liu N, Zhang G, Bi F, Pan Y, Xue Y, Shi Y, Yao L, Zhao L, Zheng Y, Fan D (2007) RhoC is essential for the metastasis of gastric cancer. J Mol Med 85:1149–1156

    Google Scholar 

  29. Yamaguchi TP, Bradley A, McMahon AP, Jones S (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126:1211–1223

    PubMed  CAS  Google Scholar 

  30. Li C, Xiao J, Hormi K, Borok Z, Minoo P (2002) Wnt5a participates in distal lung morphogenesis. Dev Biol 248:68–81

    Article  PubMed  CAS  Google Scholar 

  31. Kouros-Mehr H, Werb Z (2006) Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn 235:3404–3412

    Article  PubMed  CAS  Google Scholar 

  32. Behbod F, Xian W, Shaw CA, Hilsenbeck SG, Tsimelzon A, Rosen JM (2006) Transcriptional profiling of mammary gland side population cells. Stem Cells 24:1065–1074

    Article  PubMed  CAS  Google Scholar 

  33. Balic M, Lin Y, Young L, Haws D, Guiliano A, McNamara G, Datar RH, Cote RJ (2006) Most early disseminated cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621

    Article  PubMed  CAS  Google Scholar 

  34. Mericskay M, Kitajewski J, Sassoon D (2004) Wnt5a is required for proper epithelial-mesenchymal interactions in the uterus. Development 131:2061–2072

    Article  PubMed  CAS  Google Scholar 

  35. Sonderegger S, Husslein H, Leisser C, Knöfler M (2007) Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta 28(Suppl A):97–102

    Article  Google Scholar 

  36. Hayashi K, Burghardt RC, Bazer FW, Spencer TE (2007) WNTs in the ovine uterus: potential regulation of periimplantation ovine conceptus development. Endocrinology 48:3496–3506

    Article  Google Scholar 

  37. Pukrop T, Klemm F, Hagemann T, Gradl D, Schulz M, Siemes S, Trumper L, Binder C (2006) Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci 103:5454–549

    Article  PubMed  CAS  Google Scholar 

  38. Le Floch N, Rivat C, De Wever O, Bruyneel E, Mareel M, Dale T, Gespach C (2005) The proinvasive activity of Wnt-2 is mediated through a noncanonical Wnt pathway coupled to GSK-3beta and c-Jun/AP-1 signaling. FASEB J 19:144–146

    PubMed  Google Scholar 

  39. Balkwill F (2006) TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev 25:409–416

    Article  PubMed  CAS  Google Scholar 

  40. Prieve MG, Moon RT (2003) Stromelysin-1 and mesothelin are differentially regulated by Wnt-5a and Wnt-1 in C57mg mouse mammary epithelial cells. BMC Dev Biol 3:2

    Article  PubMed  Google Scholar 

  41. Maskauchuan TN, Agalliu D, Vorontchikhina M, Ahn A, Parmalee NL, Li CM, Khoo A, Tycko B, Brown AM, Kitajewski J (2006) Wnt5a signaling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2. Mol Biol Cell 17:5163–5172

    Article  Google Scholar 

  42. Fathke C, Wilson L, Shah K, Kim B, Hocking A, Moon RT, Isik F (2006) Wnt signaling induces epithelial differentiation during cutaneous wound healing. BMC Cell Biol 7:4

    Article  PubMed  Google Scholar 

  43. Bui TD, Zhang L, Rees MC, Bicknell R, Harris AL (1997) Expression and hormone regulation of Wnt2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma. Br J Cancer 75:1131–1136

    PubMed  CAS  Google Scholar 

  44. Blanc E, Goldschneider D, Douc-Rasy S, Benard J, Raguenez G (2005) Wnt-5a gene expression in malignant human neuroblasts. Cancer Lett 228:117–123

    Article  PubMed  CAS  Google Scholar 

  45. Liang H, Chen Q, Coles AH, Anderson SJ, Pihan G, Bradley A, Gerstein R, Jurecic R, Jones SN (2003) Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoetic tissue. Cancer Cell 4:349–360

    Article  PubMed  CAS  Google Scholar 

  46. Kremenevskaja N, von Wasielewski R, Rao AS, Schofl C, Andersson T, Brabant G (2005) Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene 24:2144–54

    Article  PubMed  CAS  Google Scholar 

  47. Dejmek J, Dejmek A, Safholm A, Sjolander A, Andersson T (2005) Wnt-5a protein expression in primary dukes B colon cancers identifies a subgroup of patients with good prognosis. Cancer Res 65:9142–9146

    Article  PubMed  CAS  Google Scholar 

  48. Jönsson M, Dejmek J, Bendahl PO, Andersson T (2002) Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res 62:409–416

    PubMed  Google Scholar 

  49. Dejmek J, Leandersson K, Manjer J, Bjartell A, Emdin SO, Vogel WF, Landberg G, Andersson T (2005) Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clin Cancer Res 11:520–528

    PubMed  CAS  Google Scholar 

  50. Iozzo RV, Eichstetter I, Danielson KG (1995) Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer Res 55:3495–3499

    PubMed  CAS  Google Scholar 

  51. Lejeune S, Huguet EL, Hamby A, Poulsom R, Harris AL (1995) Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin Cancer Res 1:215–222

    PubMed  CAS  Google Scholar 

  52. Fernandez-Cobo M, Zammarchi F, Mandeli J, Holland JF, Pogo BG (2007) Expression of Wnt5A and Wnt10B in non-immortalized breast cancer cells. Oncol Rep 17:903–907

    PubMed  CAS  Google Scholar 

  53. Zeng ZY, Zhou YH, Zhang WL, Xiong W, Fan SQ, Li XL, Luo XM, Wu MH, Yang YX, Huang C, Cao L, Tang K, Qian J, Shen SR, Li GY (2007) Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway. Hum Pathol 38:120–133

    Article  PubMed  CAS  Google Scholar 

  54. Ripka S, Konig A, Buchholz M, Wagner M, Sipos B, Kloppel G, Downward J, Gress T, Michl P (2007) WNT5A-target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis 6:1178–1187

    Article  Google Scholar 

  55. Taki M, Kamata N, Yokoyama K, Fujimoto R, Tsutsumi S, Nagayama M (2003) Down-regulation of Wnt-4 and up-regulation of Wnt-5a expression by epithelial-mesenchymal transition in human squamous carcinoma cells. Cancer Sci 94:593–597

    Article  PubMed  CAS  Google Scholar 

  56. Huang CL, Liu D, Nakano J, Ishikawa S, Kontani K, Yokomise H, Ueno M (2005) Wnt5a expression is associated with the tumor proliferation and the stromal vascular endothelial growth factor - an expression in non-small-cell lung cancer. J Clin Oncol 23:8765–8773

    Article  PubMed  Google Scholar 

  57. Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, Asahara T, Yasui W, Kikuchi A (2006) Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res 66:10439–10448

    Article  PubMed  CAS  Google Scholar 

  58. Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540

    Article  PubMed  CAS  Google Scholar 

  59. Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, Trent JM (2002) Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1:279–288

    Article  PubMed  CAS  Google Scholar 

  60. Smith K, Bui TD, Poulsom R, Kaklamanis L, Williams G, Harris AL (1999) Up-regulation of macrophage wnt gene expression in adenoma-carcinoma progression of human colorectal cancer. Br J Cancer 81:496–502

    Article  PubMed  CAS  Google Scholar 

  61. Olson DJ, Gibo DM (1998) Antisense wnt-5a mimics wnt1-mediated C57MG mammary epithelial cell transformation. Exp Cell Res 241:134–141

    Article  PubMed  CAS  Google Scholar 

  62. Jönsson M, Andersson T (2001) Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. J Cell Sci. 2001 114:2043–2053

    Google Scholar 

  63. Säfholm A, Leandersson K, Dejmek J, Nielsen CK, Villoutreix BO, Andersson T (2006) A formylated hexapeptide ligand mimics the ability of Wnt-5a to impair migration of human breast epithelial cells. J Biol Chem 281:2740–49

    Article  PubMed  Google Scholar 

  64. Nishita M, Yoo SK, Nomachi A, Kani S, Sougawa N, Ohta Y, Takada S, Kikuchi A, Minami Y (2006) Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J Cell Biol 175:555–562

    Article  PubMed  CAS  Google Scholar 

  65. Dissanayake SK, Wade M, Johnson CE, O'Connell MP, Leotlela PD, French AD, Shah KV, Hewitt KJ, Rosenthal DT, Indig FE, Jiang Y, Nickoloff BJ, Taub DD, Trent JM, Moon RT, Bittner M, Weeraratna AT (2007) The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem 282:17259–17271

    Article  PubMed  CAS  Google Scholar 

  66. Schenk S, Quaranta V (2003) Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell Biol 13:366–375

    Article  PubMed  CAS  Google Scholar 

  67. Mareel M, Leroy A (2003) Clinical, cellular and molecular aspects of cancer invasion. Physiol Rev 83:337–376

    PubMed  CAS  Google Scholar 

  68. Mikels AJ, Nusse R (2006) Wnts as ligands: processing, secretion and reception. Oncogene 25:7461–7468

    Article  PubMed  CAS  Google Scholar 

  69. Ai X, Do AT, Lozynska O, Kusche-Gullberg M, Lindahl U, Emerson CP (2003) QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol 162:341–351

    Article  PubMed  CAS  Google Scholar 

  70. Kurayoshi M, Yamamoto H, Izumi S, Kikuchi A (2007) Post-translational palmitoylation and glycosylation of Wnt-5a are necassary for its signaling. Biochemical J 402:515–523

    Article  CAS  Google Scholar 

  71. Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A, Kirchner T (2005) Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and ß-catenin. Cells Tissues Organs 179:56–65

    Article  PubMed  CAS  Google Scholar 

  72. Brabletz T, Jung A, Hermann K, Gunther K, Hohenberger W, Kirchner T (1998) Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasive front. Pathol Res Pract 194:701–704

    PubMed  CAS  Google Scholar 

  73. Gregorieff A, Pinto D, Begthel H, Destrée O, Kielman M, Clevers H (2005) Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 129:626–38

    PubMed  CAS  Google Scholar 

  74. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    Article  PubMed  CAS  Google Scholar 

  75. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    Article  PubMed  CAS  Google Scholar 

  76. Hagemann T, Robinson SC, Schulz M, Trumper L, Balkwill FR, Binder C (2004) Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 8:1543–1549

    Article  Google Scholar 

  77. Blumenthal A, Ehlers S, Lauber J, Buer J, Lange C, Goldmann T, Heine H, Brandt E, Reiling N (2006) The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood 108:965–973

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Annette Borchers and Florian Klemm for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Binder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pukrop, T., Binder, C. The complex pathways of Wnt 5a in cancer progression. J Mol Med 86, 259–266 (2008). https://doi.org/10.1007/s00109-007-0266-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0266-2

Keywords

Navigation