Skip to main content

Advertisement

Log in

CpG ODN107 potentiates radiosensitivity of human glioma cells via TLR9-mediated NF-κB activation and NO production

  • Research Article
  • Published:
Tumor Biology

Abstract

Radiotherapy is a standard treatment for glioma patient with or without surgery; radiosensitizer can increase tumor sensitivity for radiotherapy. Herein, a synthetic oligodeoxynucleotide containing unmethylated CpG dinucleotides (CpG ODN107) as a radiosensitizer was investigated in vitro and in vivo, and the possible mechanisms were studied in vitro. In the present experiments, the human glioma U87 cell line used herein was resistant to 5 Gy of β-ray irradiation. The results showed that 10 μg/ml of CpG ODN107 in combination with irradiation significantly inhibited cell proliferation both in MTT assay and colony formation experiments. Tumor growth was inhibited by CpG ODN107 in combination with local irradiation but not by local irradiation or CpG ODN107 alone in human glioma xenograft model in nude mice. The inhibition ratio of tumor growth produced by CpG ODN107 (1.7, 5, and 15 mg/kg) in combination with irradiation was 27.3, 67.0, and 65.5 %, respectively. Further molecular mechanisms were studied in vitro. The results showed that the expressions of iNOS, NO, TLR9 mRNA, and NF-κB p50/p65 increased in the cells treated with CpG ODN107 in combination with irradiation. CpG ODN107 in combination with irradiation did not induce apoptosis but induced cell cycle arrest at G1 phase. The said results demonstrated that CpG ODN107 possessed a radiosensitizing effect via TLR9-mediated NF-κB activation and NO production in the tumor cells, leading to cell cycle arrest. Therefore, CpG ODN107 is a potential candidate as radiosensitizer for human glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CpG ODN:

Oligodeoxynucleotides containing unmethylated CG dinucleotides

LPS:

Lipopolysacchride

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

NO:

Nitric oxide

iNOS:

Inducible nitric oxide synthase

NF-κB:

Nuclear factor-κB

IR:

Irradiation

TLR:

Toll-like receptor

IC10 :

Inhibitor concentration at which 10 % enzyme inhibition occurs

TGD:

Tumor growth delay

TVQT:

Tumor volumes quadrupling time

SF:

Surviving fraction.

References

  1. Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY. Primary brain tumors in adults. Lancet. 2003;361:323–31.

    Article  PubMed  Google Scholar 

  2. Berg G, Blomquist E, Cavallin-Ståhl E. A systematic overview of radiation therapy effects in brain tumours. Acta Oncol. 2003;42:582–8.

    Article  PubMed  Google Scholar 

  3. Pang BC, Wan WH, Lee CK, Khu KJ, Ng WH. The role of surgery in high-grade glioma—is surgical resection justified? A review of the current knowledge. Ann Acad Med Singapore. 2007;36:358–63.

    PubMed  Google Scholar 

  4. Boeckman HJ, Trego KS, Turchi JJ. Cisplatin sensitizes cancer cells to ionizing radiation via inhibition of nonhomologous end joining. Mol Cancer Res. 2005;3:277–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kurdoglu B, Cheong N, Guan J, Corn BW, Curran Jr WJ, Iliakis G. Apoptosis as a predictor of paclitaxel-induced radiosensitization in human tumor cell lines. Clin Cancer Res. 1999;5:2580–7.

    CAS  PubMed  Google Scholar 

  6. De Ridder M, Verovski VN, Van den Berge DL, Sermeus AB, Monsaert C, Wauters N, et al. Lipid A radiosensitizes hypoxic EMT-6 tumor cells: role of the NF-kappa B signaling pathway. Int J Radiat Oncol Biol Phys. 2003;57:779–86.

    Article  PubMed  Google Scholar 

  7. Milas L, Mason KA, Ariga H, Hunter N, Neal R, Valdecanas D, et al. CpG oligodeoxynucleotide enhances tumor response to radiation. Cancer Res. 2004;64:5074–7.

    Article  CAS  PubMed  Google Scholar 

  8. Carpentier AF, Xie J, Mokhtari K, Delattre JY. Successful treatment of intracranial gliomas in rat by oligodeoxynucleotides containing CpG motifs. Clin Cancer Res. 2000;6(6):2469–73.

    CAS  PubMed  Google Scholar 

  9. Meng Y, Carpentier AF, Chen L, Boisserie G, Simon JM, Mazeron JJ, et al. Successful combination of local CpG ODN and radiotherapy in malignant glioma. Int J Cancer. 2005;116:992–7.

    Article  CAS  PubMed  Google Scholar 

  10. Opal SM. The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis. Int J Med Microbiol. 2007;297:365–77.

    Article  CAS  PubMed  Google Scholar 

  11. Barton GM, Kagan JC, Medzhitov R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol. 2006;7:49–56.

    Article  CAS  PubMed  Google Scholar 

  12. Mason KA, Neal R, Hunter N, Ariga H, Ang K, Milas L. CpG oligodeoxynucleotides are potent enhancers of radio- and chemoresponses of murine tumors. Radiother Oncol. 2006;80:192–8.

    Article  CAS  PubMed  Google Scholar 

  13. Carpentier A, Laigle-Donadey F, Zohar S, Capelle L, Behin A, Tibi A, et al. Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. Neuro Oncol. 2006;8:60–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tirand L, Bastogne T, Bechet D, Linder M, Thomas N, Frochot C, et al. Response surface methodology: an extensive potential to optimize in vivo photodynamic therapy conditions. Int J Radiat Oncol Biol Phys. 2009;75:244–52.

    Article  PubMed  Google Scholar 

  15. Cook T, Wang Z, Alber S, Liu K, Watkins SC, Vodovotz Y, et al. Nitric oxide and ionizing radiation synergistically promote apoptosis and growth inhibition of cancer by activating p53. Cancer Res. 2004;64:8015–21.

    Article  CAS  PubMed  Google Scholar 

  16. Yasuda H. Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer. Nitric Oxide. 2008;19:205–16.

    Article  CAS  PubMed  Google Scholar 

  17. Hosoi T, Suzuki S, Nomura J, Ono A, Okuma Y, Akira S, et al. Bacterial DNA induced iNOS expression through MyD88-p38 MAP kinase in mouse primary cultured glial cells. Brain Res Mol Brain Res. 2004;124:159–64.

    Article  CAS  PubMed  Google Scholar 

  18. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A toll-like receptor recognizes bacterial DNA. Nature. 2000;408:740–5.

    Article  CAS  PubMed  Google Scholar 

  19. Hong Z, Jiang Z, Liangxi W, Guofu D, Ping L, Yongling L, et al. Chloroquine protects mice from challenge with CpG ODN and LPS by decreasing proinflammatory cytokine release. Int Immunopharmacol. 2004;4(2):223–34.

    Article  PubMed  Google Scholar 

  20. Naiki Y, Michelsen KS, Zhang W, Chen S, Doherty TM, Arditi M. Transforming growth factor-beta differentially inhibits MyD88-dependent, but not TRAM- and TRIF-dependent, lipopolysaccharide-induced TLR4 signaling. J Biol Chem. 2005;280:5491–5.

    Article  CAS  PubMed  Google Scholar 

  21. Mitchell JB, Cook JA, Krishna MC, DeGraff W, Gamson J, Fisher J, et al. Radiation sensitisation by nitric oxide releasing agents. Br J Cancer Suppl. 1996;27:S181–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mitchell JB, DeGraff W, Kim S, Cook JA, Gamson J, Christodoulou D, et al. Redox generation of nitric oxide to radiosensitize hypoxic cells. Int J Radiat Oncol Biol Phys. 1998;42:795–8.

    Article  CAS  PubMed  Google Scholar 

  23. Wardman P, Rothkamm K, Folkes LK, Woodcock M, Johnston PJ. Radiosensitization by nitric oxide at low radiation doses. Radiat Res. 2007;167:475–84.

    Article  CAS  PubMed  Google Scholar 

  24. Onier N, Hilpert S, Reveneau S, Arnould L, Saint-Giorgio V, Exbrayat JM, et al. Expression of inducible nitric oxide synthase in tumors in relation with their regression induced by lipid A in rats. Int J Cancer. 1999;81:755–60.

    Article  CAS  PubMed  Google Scholar 

  25. Janssens MY, Van den Berge DL, Verovski VN, Monsaert C, Storme G. Activation of inducible nitric oxide synthase results in nitric oxide-mediated radiosensitization of hypoxic EMT-6 tumor cells. Cancer Res. 1998;58:5646–8.

    CAS  PubMed  Google Scholar 

  26. Jordan BF, Beghein N, Aubry M, Grégoire V, Gallez B. Potentiation of radiation-induced regrowth delay by isosorbide dinitrate in FSaII murine tumors. Int J Cancer. 2003;103:138–41.

    Article  CAS  PubMed  Google Scholar 

  27. De Ridder M, Verovski VN, Darville MI, Van Den Berge DL, Monsaert C, Eizirik DL, et al. Macrophages enhance the radiosensitizing activity of lipid A: a novel role for immune cells in tumor cell radioresponse. Int J Radiat Oncol Biol Phys. 2004;60:598–606.

    Article  PubMed  Google Scholar 

  28. Meng Y, Kujas M, Marie Y, Paris S, Thillet J, Delattre JY, et al. Expression of TLR9 within human glioblastoma. J Neurooncol. 2008;88:19–25.

    Article  PubMed  Google Scholar 

  29. Grauer OM, Molling JW, Bennink E, Toonen LW, Sutmuller RP, Nierkens S, et al. TLR ligands in the local treatment of established intracerebral murine gliomas. J Immunol. 2008;181:6720–9.

    Article  CAS  PubMed  Google Scholar 

  30. Merrell MA, Ilvesaro JM, Lehtonen N, Sorsa T, Gehrs B, Rosenthal E, et al. Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol Cancer Res. 2006;4:437–47.

    Article  CAS  PubMed  Google Scholar 

  31. Hacker H, Vabulas RM, Takeuchi O, Hoshino K, Akira S, Wagner H. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF) 6. J Exp Med. 2000;192:595–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. DiGregorio PJ, Ubersax JA, O’Farrell PH. Hypoxia and nitric oxide induce a rapid, reversible cell cycle arrest of the Drosophila syncytial divisions. J Biol Chem. 2001;276:1930–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Porter AG, Jänicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104.

    Article  CAS  PubMed  Google Scholar 

  34. El Andaloussi A, Sonabend AM, Han Y, Lesniak MS. Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia. 2006;54:526–35.

    Article  PubMed  Google Scholar 

  35. Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y. Radiation­induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cell. Int J Oncol. 2005;26:1401–10.

    CAS  PubMed  Google Scholar 

  36. Yao KC, Komata T, Kondo Y, Kanzawa T, Kondo S, Germano IM. Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin­dependent kinase inhibitors, and autophagy. J Neurosurg. 2003;98:378–84.

    Article  CAS  PubMed  Google Scholar 

  37. Tsuboi Y, Kurimoto M, Nagai S, Hayakawa Y, Kamiyama H, Hayashi N, et al. Induction of autophagic cell death and radiosensitization by the pharmacological inhibition of nuclear factor-kappa B activation in human glioma cell lines. J Neurosurg. 2009;110:594–604.

    Article  CAS  PubMed  Google Scholar 

  38. Bertin S, Samson M, Pons C, Guigonis JM, Gavelli A, Baque P, et al. Comparative proteomics study reveals that bacterial CPG motifs induce tumor cell autophagy in vitro and in vivo. Molecular & Cellular Proteomics. 2008;7:2311–22.

    Article  CAS  Google Scholar 

  39. Zha L, Qiao T, Yuan S, Lei L. Enhancement of radiosensitivity by CpG-oligodeoxyribonucleotide-7909 in human non-small cell lung cancer A549 cells. Cancer Biother Radiopharm. 2010;25(2):165–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was provided from a major scientific and technological special project for “Significant New Drugs Creation” of China (2009ZX09103-051). Thanks are also due to senior technician Hong Xiao, Technician Xi Wang, and Zhan Jiang in Department of Oncology of Southwest Hospital for technical assistance.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Zheng or Hong Zhou.

Additional information

Xiaoli Li and Dan Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Liu, D., Liu, X. et al. CpG ODN107 potentiates radiosensitivity of human glioma cells via TLR9-mediated NF-κB activation and NO production. Tumor Biol. 33, 1607–1618 (2012). https://doi.org/10.1007/s13277-012-0416-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0416-1

Keywords

Navigation