Skip to main content

Advertisement

Log in

Ezrin mRNA target site selection for DNAzymes using secondary structure and hybridization thermodynamics

  • Research Article
  • Published:
Tumor Biology

Abstract

Ezrin, a membrane organizer and linker between plasma membrane and cytoskeleton, is well documented to play an important role in the metastatic capacity of cancer cells especially for osteosarcoma cells. It has provided an ideal target for cancer gene therapy. RNA-cleaving 10–23 DNAzymes, consisting of a 15-nucleotide catalytical domain flanked by two target-specific complementary arms, can cleave the target mRNA at purine–pyrimidine dinucleotide effectively. In the present study, we designed and screened the target sites for 10–23 DNAzymes against ezrin mRNA by using multiple computational methods with combination of secondary structural and hybridization thermodynamic parameters. Then, we testified the activities of the DNAzymes directed against these selected target sites in vitro. Our results show that AU1751 is the most effective target site of ezrin mRNA for DNAzymes because of its ideal secondary structure and hybridization thermodynamics. So, there is a significant correlation between the multiple computational methods and the efficacy of the corresponding DNAzymes. These provide a rational, efficient way for DNAzymes selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sweetnam R. Osteosarcoma. Br J Hosp Med. 1982;28:16–21.

    Google Scholar 

  2. Damron TA, Ward WG, Stewart A. Osteosarcoma, chondrosarcoma, and Ewing’s sarcoma. National Cancer Data Base report. Clin Orthop Relat Res. 2007;459:40–7.

    Article  PubMed  Google Scholar 

  3. Bielack SS, Kempf-Bielack B, Delling G, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol. 2002;20:776–90.

    Article  PubMed  Google Scholar 

  4. Meyers PS, Heller G, Healey G, et al. Osteogenic sarcoma with clinically detectable metastasis at initial presentation. J Clin Oncol. 1993;11:449–53.

    PubMed  CAS  Google Scholar 

  5. Harris MB, Gieser P, Goorin AM, et al. Treatment of metastatic osteosarcoma at diagnosis: a Pediatric Oncology Group Study. J Clin Oncol. 1998;16:3641–8.

    PubMed  CAS  Google Scholar 

  6. Mangeat P, Roy C, Martin M. ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol. 1999;9:187–92.

    Article  PubMed  CAS  Google Scholar 

  7. Hunter KW. Ezrin, a key component in tumor metastasis. Trends Mol Med. 2004;10:201–4.

    Article  PubMed  CAS  Google Scholar 

  8. Curto M, McClatchey AI. Ezrin…a metastatic detERMinant? Cancer Cell. 2004;5:113–4.

    Article  PubMed  CAS  Google Scholar 

  9. Khanna C, Khan J, Nguyen P, et al. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Cancer Res. 2001;61:3750–9.

    PubMed  CAS  Google Scholar 

  10. Krishnan K, Bruce B, Hewitt S, Thomas D, Khanna C, Helman LJ. Ezrin mediates growth and survival in Ewing’s sarcoma through the AKT/mTOR, but not the MAPK, signaling pathway. Clin Exp Metastasis. 2006;23:227–36.

    Article  PubMed  CAS  Google Scholar 

  11. Weng WH, Ahlen J, Astrom K, Lui WO, Larsson C. Prognostic impact of immunohistochemical expression of ezrin in highly malignant soft tissue sarcomas. Clin Cancer Res. 2005;11:6198–204.

    Article  PubMed  CAS  Google Scholar 

  12. Khanna C, Wan X, Bose S, et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 2004;10:182–6.

    Article  PubMed  CAS  Google Scholar 

  13. Sun LQ, Cairns MJ, Saravolac EG, Baker A, Gerlach WL. Catalytic nucleic acids: from lab to applications. Pharmacol Rev. 2000;52:325–47.

    PubMed  CAS  Google Scholar 

  14. Santoro SW, Joyce GF. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A. 1997;94:4262–6.

    Article  PubMed  CAS  Google Scholar 

  15. Cairns MJ, King A, Sun LQ. Optimisation of the 10–23 DNAzyme–substrate pairing interactions enhanced RNA cleavage activityat purine–cytosine target sites. Nucleic Acids Res. 2003;31:2883–9.

    Article  PubMed  CAS  Google Scholar 

  16. Vickers TA, Wyatt JR, Freier SM. Effects of RNA secondary structure on cellular antisense activity. Nucleic Acids Res. 2000;28:1340–7.

    Article  PubMed  CAS  Google Scholar 

  17. Bohula EA, Salisbury AJ, Sohail M, et al. The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript. J Biol Chem. 2003;278:15991–7.

    Article  PubMed  CAS  Google Scholar 

  18. Kretschmer-Kazemi Far R, Sczakiel G. The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res. 2003;31:4417–24.

    Article  PubMed  CAS  Google Scholar 

  19. Schubert S, Grunweller A, Erdmann VA, Kurreck J. Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol. 2005;348:883–93.

    Article  PubMed  CAS  Google Scholar 

  20. Zhao JJ, Lemke G. Rules for ribozymes. Mol Cell Neurosci. 1998;11:92–7.

    Article  PubMed  CAS  Google Scholar 

  21. Overhoff M, Alken M, Far RK, et al. Local RNA target structure influences siRNA efficacy: a systematic global analysis. J Mol Biol. 2005;348:871–81.

    Article  PubMed  CAS  Google Scholar 

  22. Yoshinari K, Miyagishi M, Taira K. Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acids Res. 2004;32:691–9.

    Article  PubMed  CAS  Google Scholar 

  23. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436:214–20.

    Article  PubMed  CAS  Google Scholar 

  24. Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y. Potent effect of target structure on microRNA function. Nat Struct Mol Biol. 2007;14:287–94.

    Article  PubMed  CAS  Google Scholar 

  25. Denman RB. Using RNAFOLD to predict the activity of small catalytic RNAs. Biotechniques. 1993;15:1090–5.

    PubMed  CAS  Google Scholar 

  26. Sczakiel G, Tabler M. Computer-aided calculation of the local folding potential of target RNA and its use for ribozyme design. Methods Mol Biol. 1997;74:11–5.

    PubMed  CAS  Google Scholar 

  27. James W, Cowe E. Computational approaches to the identification of ribozyme target sites. Methods Mol Biol. 1997;74:17–26.

    PubMed  CAS  Google Scholar 

  28. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–15.

    Article  PubMed  CAS  Google Scholar 

  29. Camps-Valls G, Chalk AM, Serrano-Lopez A, Martin-Guerrero JD, Sonnhammer ELL. Profiled support vector machine for antisense oligonucleotide efficacy prediction. BMC Bioinformatics. 2004;5:135.

    Article  PubMed  Google Scholar 

  30. Chalk AM, Sonnhammer ELL. Computational antisense oligo prediction with a neural network model. Bioinformatics. 2002;18:1567–75.

    Article  PubMed  CAS  Google Scholar 

  31. Giddings MC, Shah AA, Freier S, Atkins JF, Gesteland RF, Matveeva OV. Artificial neural network prediction of antisense oligodeoxynucleotide activity. Nucleic Acids Res. 2002;30:4295–304.

    Article  PubMed  CAS  Google Scholar 

  32. Saetrom P. Predicting the efficacy of short oligonucleotides in antisense and RNAi experiments with boosted genetic programming. Bioinformatics. 2004;20:3055–63.

    Article  PubMed  CAS  Google Scholar 

  33. Thierry AR, Rahman A, Dritschilo A. Overcoming multi drug resistance in human tumor cells using free and liposomally encapsulated antisense oligodeoxynucleotides. Biochem Biophys Res Commun. 1993;190:952–60.

    Article  PubMed  CAS  Google Scholar 

  34. Jaeger JA, Turner DH, Zuker M. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A. 1989;86:7706–10.

    Article  PubMed  CAS  Google Scholar 

  35. Walter AE, Turner DH, Kim J, et al. Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves prediction of RNA folding. Proc Natl Acad Sci U S A. 1994;91:9218–22.

    Article  PubMed  CAS  Google Scholar 

  36. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989;244:48–52.

    Article  PubMed  CAS  Google Scholar 

  37. SantaLucia J, Allawi HT, Seneviratne PA. Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry. 1996;35:3555–62.

    Article  PubMed  CAS  Google Scholar 

  38. Sugimoto N, S-i N, Katoh M, et al. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry. 1995;34:11211–6.

    Article  PubMed  CAS  Google Scholar 

  39. Mathews DH, Burkard ME, Freier SM, Wyatt JR, Turner DH. Predicting oligonucleotide affinity to nucleic acid targets. RNA. 1999;5:1458–69.

    Article  PubMed  CAS  Google Scholar 

  40. Lu ZJ, Mathews DH. Efficient siRNA selection using hybridization thermodynamics. Nucleic Acids Res. 2008;36:640–7.

    Article  PubMed  CAS  Google Scholar 

  41. Lu ZX, Ye M, Yan GR, et al. Effect of EBV LMP1 targeted DNAzymes on cell proliferation and apoptosis. Cancer Gene Ther. 2005;12:646–54.

    Article  Google Scholar 

  42. Pyle AM, Chu VT, Jankowsky E, Boudvillain M. Using DNAzymes to cut, process, and map RNA molecules for structural studies or modification. Methods Enzymol. 2000;317:140–6.

    Article  PubMed  CAS  Google Scholar 

  43. Cairns MJ, Hopkins TM, Witherington C, Wang L, Sun LQ. Target site selection for an RNA-cleaving catalytic DNA. Nat Biotechnol. 1999;17:480–6.

    Article  PubMed  CAS  Google Scholar 

  44. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A. 2004;101:7287–92.

    Article  PubMed  CAS  Google Scholar 

  45. Xia T, SantaLucia Jr J, Burkard ME, et al. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson–Crick pairs. Biochemistry. 1998;37:14719–35.

    Article  PubMed  CAS  Google Scholar 

  46. Torgeir H, Mohammed A, Merete TW, Eshrat B, Hans P. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res. 2002;30:1757–66.

    Article  Google Scholar 

  47. Sohail M, Hochegger H, Klotzbucher A, Guellec RL, Hunt T, Southern EM. Antisense oligonucleotides selected by hybridisation to scanning arrays are effective reagents in vivo. Nucleic Acids Res. 2001;29:2041–51.

    Article  PubMed  CAS  Google Scholar 

  48. Beale G, Hollins AJ, Benboubetra M, et al. Gene silencing nucleic acids designed by scanning arrays: anti-EGFR activity of siRNA, ribozyme and DNA enzymes targeting a single hybridization-accessible region using the same delivery system. J Drug Target. 2003;11:449–56.

    Article  PubMed  CAS  Google Scholar 

  49. Petch AK, Sohail M, Hughes MD, et al. Messenger RNA expression profiling of genes involved in epidermal growth factor receptor signalling in human cancer cells treated with scanning arraydesigned antisense oligonucleotides. Biochem Pharmacol. 2003;66:819–30.

    Article  PubMed  CAS  Google Scholar 

  50. Kurreck J, Bieber B, Jahnel R, Erdmann VA. Comparative study of DNA enzymes and ribozymes against the same full-length messenger RNA of the vanilloid receptor subtype I. J Biol Chem. 2002;277:7099–107.

    Article  PubMed  CAS  Google Scholar 

  51. Schubert S, Gul DC, Grunert HP, Zeichhardt H, Erdmann VA, Kurreck J. RNA cleaving ‘10–23’ DNAzymes with enhanced stability and activity. Nucleic Acids Res. 2003;31:5982–92.

    Article  PubMed  CAS  Google Scholar 

  52. Schubert S, Furste JP, Werk D, et al. Gaining target access for deoxyribozymes. J Mol Biol. 2004;339:355–63.

    Article  PubMed  CAS  Google Scholar 

  53. Ho SP, Bao Y, Lesher T, et al. Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. Nat Biotechnol. 1998;16:59–63.

    Article  PubMed  CAS  Google Scholar 

  54. Scherer LJ, Rossi JJ. Approaches for the sequence-specific knockdown of mRNA. Nat Biotechnol. 2003;21:1457–65.

    Article  PubMed  CAS  Google Scholar 

  55. Patzel V, Steidl U, Kronenwett R, Haas R, Sczakiel G. A theoretical approach to select effective antisense oligodeoxyribonucleotides at high statistical probability. Nucleic Acids Res. 1999;27:4328–34.

    Article  PubMed  CAS  Google Scholar 

  56. Laptev AV, Lu Z, Colige A, Prockop DJ. Specific inhibition of expression of a human collagen gene (COL1A1) with modified antisense oligonucleotides. Biochemistry. 1994;33:11033–9.

    Article  PubMed  CAS  Google Scholar 

  57. Sczakiel G, Homann M, Rittner K. Computer-aided search for effective antisense RNA target sequences of the human immunodeficiency virus type 1. Antisense Res Dev. 1993;3:45–52.

    PubMed  CAS  Google Scholar 

  58. Lima WF, Monia BP, Ecker DJ, Freier SM. Implication of RNA structure on antisense oligonucleotide hybridization kinetics. Biochemistry. 1992;31:12055–61.

    Article  PubMed  CAS  Google Scholar 

  59. Matveeva O, Felden B, Audlin S, Gesteland RF, Atkins JF. A rapid in vitro method for obtaining RNA accessibility patterns for complementary DNA probes: correlation with an intracellular pattern and known RNA structures. Nucleic Acids Res. 1997;25:5010–6.

    Article  PubMed  CAS  Google Scholar 

  60. Ding Y, Lawrence CE. Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond. Nucleic Acids Res. 2001;29:1034–46.

    Article  PubMed  CAS  Google Scholar 

  61. Shao Y, Wu S, Chan CY, Klapper JR, Schneider E, Ding Y. A structural analysis of in vitro catalytic activities of hammerhead ribozymes. BMC Bioinformatics. 2007;30:469.

    Article  Google Scholar 

  62. Abdelghany A, Uddin M, Wood M, Taira K, Beeson D. Design of efficient DNAzymes against muscle AChR α-subunit cRNA in vitro and in HEK293 cells. J RNAi Gene Silencing. 2005;1:88–96.

    Google Scholar 

  63. Stein CA. Keeping the biotechnology of antisense in context. Nat Biotechnol. 1999;17:209–12.

    Article  PubMed  CAS  Google Scholar 

  64. Southern EM, Milner N, Mir KU. Discovering antisense reagents by hybridization of RNA to oligonucleotide arrays. Ciba Found Symp. 1997;209:38–44.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Research Fund for the Doctoral Program of Higher Education of China (20060558018). We thank Dr. PingXian Tan and Dr. BiCheng Yong at the Department of Orthopaedic Surgery, Musculoskeletal Tumor Center, the First Affiliated Hospital of Sun Yat-Sen University, for helpful discussions, comments, and critical reading of the manuscript.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JingNan Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Shen, J., Shang, X. et al. Ezrin mRNA target site selection for DNAzymes using secondary structure and hybridization thermodynamics. Tumor Biol. 32, 809–817 (2011). https://doi.org/10.1007/s13277-011-0183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-011-0183-4

Keywords

Navigation