Skip to main content

Advertisement

Log in

Downregulation of IGF-IR expression by RNAi inhibits proliferation and enhances chemosensitization of human colon cancer cells

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

Colon cancer is the second leading cause of cancer death worldwide. Elevated expression of insulin-like growth factor-I receptor (IGF-IR) is a frequent genetic abnormality seen in this malignancy. For a better understanding of its role in maintaining the malignant phenotype, we used RNA interference (RNAi) directed against IGF-IR in our study. The aim of this study was to examine the anti-proliferation and chemosensitization effects elicited by a decrease in the transcription and protein levels of IGF-IR by RNAi in SW480 colon cancer cells.

Methods

A plasmid-based polymerase III promoter system was used to deliver and express short interfering RNA (siRNA) targeting IGF-IR to reduce its expression in SW480 cells. Western blot analysis was used to measure the protein level of IGF-IR. We assessed the effects of IGF-IR silencing on cancer cell growth by a cell growth curve. The effect of the 5-fluorouracil (5-FU)-induced cell death by knockdown of IGF-IR was also investigated by methyl thiazolyl tetrazolium assay.

Results

Transfection of siRNA targeting IGF-IR was shown to reduce IGF-IR messenger RNA levels by 95%. Western blotting detected a similar inhibition of IGF-IR protein levels in those cells. The cells transfected with PKD-short hairpin RNA-IGF-IR-V2 significantly decreased cell growth and rendered cells more sensitive to chemotherapy. The highest proliferation inhibitory and chemosensitization ratios were 53 ± 2% and 1.78, respectively.

Conclusion

This study indicates that downregulation of IGF-IR results in significant inhibition of tumor growth in vitro. It also provides a promising strategy to chemotherapy efficacy in human tumors and forming a basis for future in vivo trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cohen SJ, Cohen RB, Meropol NJ (2005) Targeting signal transduction pathways in colorectal cancer—more than skin deep. J Clin Oncol 23:5374–5385

    Article  PubMed  CAS  Google Scholar 

  2. Waters C (2006) Colorectal cancer: an overview. Pharm J 27:323–326

    Article  Google Scholar 

  3. Labianca R, Beretta G, Gatta G, de Braud F, Wils J (2004) Colon cancer. Crit Rev Oncol Hematol 51:145–170

    Article  PubMed  Google Scholar 

  4. Ansari R, Mahdavinia M, Sadjadi A et al (2006) Incidence and age distribution of colorectal cancer in Iran. Results of a population-based cancer registry. Cancer Lett 240:143–147

    Article  PubMed  CAS  Google Scholar 

  5. Grady WM (2005) Epigenetic events in the colorectum and in colon cancer. Biochem Soc Trans 33:684–686

    Article  PubMed  CAS  Google Scholar 

  6. Williams NS, Gaynor RB, Scoggin S et al (2003) Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays. Clin Cancer Res 9:931–946

    PubMed  CAS  Google Scholar 

  7. LeRoith D, Roberts CT Jr (2003) The insulin-like growth factor system and cancer. Cancer Lett 195:127–137

    PubMed  CAS  Google Scholar 

  8. Yu H, Rohan T (2000) Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 92:1472–1489

    Article  PubMed  CAS  Google Scholar 

  9. Shoshana Y, Pnina LB (2005) The role of the growth hormone/insulin-like growth factor axis in tumor growth and progression: lessons from animal models. Cytokine Growth Factor Rev 16:407–420

    Article  CAS  Google Scholar 

  10. Baker J, Liu JP, Robertson EJ, Efstratiadis A (1993) Role of insulin like growth factors in embryonic and postnatal growth. Cell 75:73–82

    PubMed  CAS  Google Scholar 

  11. Rosen CJ, Pollak M (1999) Circulating IGF-I: new perspectives for a new century. Trends Endocrinol Metab 10:136–141

    Article  PubMed  CAS  Google Scholar 

  12. Guerreiro AS, Boller D, Doepfner KT, Arcaro A (2006) IGF-IR: potential role in antitumor agents. Drug News Perspect 19:261–272

    Article  PubMed  CAS  Google Scholar 

  13. Sepp-Lorenzino L (1998) Structure and function of the insulin-like growth factor I receptor. Breast Cancer Res Treat 47:235–253

    Article  PubMed  CAS  Google Scholar 

  14. De Meyts P, Whittaker J (2002) Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 1:769–783

    Article  PubMed  CAS  Google Scholar 

  15. Samani AA, Yakar S, LeRoith D, Brodt P (2006) The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 28:20–47

    Article  PubMed  CAS  Google Scholar 

  16. Valentinis B, Baserga R (2001) IGF-I receptor signalling in transformation and differentiation. Clin Mol Pathol 54:133–137

    Article  CAS  Google Scholar 

  17. Favelyukis S, Till JH, Hubbard SR, Miller WT (2001) Structure and autoregulation of the insulin like growth factor I receptors. Nat Struct Biol 8:1058–1063

    Article  PubMed  CAS  Google Scholar 

  18. Monzavi R (2002) IGFs and IGFBPs roles in health and disease. Best Pract Res Clin Endocrinol Metab 16:437–447

    Article  CAS  Google Scholar 

  19. Stewart CE, Rotwein P (1996) Growth, differentiation, and survival: multiple physiological functions for insulin-like growth factors. Physiol Rev 76:1005–1026

    PubMed  CAS  Google Scholar 

  20. Weber MM, Fottner C, Liu SB et al (2002) Overexpression of the insulin-like growth factor I receptor in human colon carcinomas. Cancer 95:2086–2095

    Article  PubMed  CAS  Google Scholar 

  21. Corinna B, Bernd G (2004) The insulin like growth factor-1 receptor (IGF-1R) as a drug target: novel approaches to cancer therapy. Growth Horm IGF Res 14:287–295

    Article  CAS  Google Scholar 

  22. Burtrum D, Zhu Z, Lu D et al (2003) A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 63:8912–8921

    PubMed  CAS  Google Scholar 

  23. Sachdev D, Hartell JS, Lee AV (2004) A dominant negative type I insulin-like growth factor receptor inhibits metastasis of human cancer cells. J Biol Chem 279:5017–5024

    Article  PubMed  CAS  Google Scholar 

  24. Chernicky CL, Tan L, Gan SU, Ilan J (2000) Treatment of human breast cancer cells with antisense RNA to the type I insulin-like growth factor receptor inhibits cell growth, suppresses tumorigenesis, alters the metastatic potential, and prolongs survival in vivo. Cancer Gene Ther 7:384–395

    Article  PubMed  CAS  Google Scholar 

  25. Gudkov AV, Zelnick CR, Kazarov AR et al (1993) Isolation of genetic suppressor elements, inducing resistance to topoisomerase II—interactive cytotoxic drugs, from human topoisomerase II cDNA. Proc Natl Acad Sci U S A 90:3231–3235

    Article  PubMed  CAS  Google Scholar 

  26. Collins FS, Green ED, Guttmacher AE, Guyer MS (2002) A vision for the future of genomic research. Nature 422:835–847

    Article  CAS  Google Scholar 

  27. Grünweller A, Wyszko E, Bieber B, Jahnel R, Erdmann VA, Kurreck J (2003) Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 31(12):3185–3193

    Article  PubMed  Google Scholar 

  28. Scherer LJ, Rossi JJ (2003) Approaches for the sequence-specific knockdown of mRNA. Nat Biotechnol 21:1457–1465

    Article  PubMed  CAS  Google Scholar 

  29. Milhavet O, Gary DS, Mattson MP (2003) RNA Interference in biology and medicine. Pharmacol Rev 55:629–648

    Article  PubMed  CAS  Google Scholar 

  30. Pfeffer S, Meister G, Landthaler M, Tuschl T (2005) RNA silencing. BIF Futura 20:83–90

    Google Scholar 

  31. Downward J (2004) RNA interference. Br Med J 328:1245–1248

    Article  CAS  Google Scholar 

  32. Sumimoto H (2005) Use of RNA interference technology for specific gene silencing. Ann Cancer Res Ther 13:23–25

    Google Scholar 

  33. Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4:457–467

    Article  PubMed  CAS  Google Scholar 

  34. Barik S (2005) Silence of the transcripts: RNA interference in medicine. J Mol Med 83:764–773

    Article  PubMed  CAS  Google Scholar 

  35. Friedrich I, Shir A, Klein S, Levitzki A (2004) RNA molecules as anti-cancer agents. Semin Cancer Biol 14:223–230

    Article  PubMed  CAS  Google Scholar 

  36. Masiero M, Nardo G, Indraccolo S, Favaro E (2007) RNA interference: implication for cancer treatment. Mol Aspects Med 28:143–166

    Article  PubMed  CAS  Google Scholar 

  37. Chung-Faye GA, Kerr DJ (2000) Innovative treatment for colon cancer. Br Med J 321(2):1397–1399

    Article  CAS  Google Scholar 

  38. LeRoith D, Werner H, Beitner JD, Roberts CT (1995) Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 16:143–163

    PubMed  CAS  Google Scholar 

  39. Uprichard SL (2005) The therapeutic potential of RNA interference. FEBS Lett 579:5996–6007

    Article  PubMed  CAS  Google Scholar 

  40. Bantounas I, Phylactou LA, Uney JB (2004) RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J Mol Endocrinol 33:545–557

    Article  PubMed  CAS  Google Scholar 

  41. Nagy P, Arndt-Jovin DJ, Jovin TM (2003) Small interferencing RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor and induce apoptosis in erbB1-overexpressing cells. Exp Cell Res 285:39–49

    Article  PubMed  CAS  Google Scholar 

  42. Sui G, Soohoo C, Affarel BB et al (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A 99:5515

    Article  PubMed  CAS  Google Scholar 

  43. Mittal V (2004) Improving the efficiency of RNA interference in mammals. Nature 5:355–365

    CAS  Google Scholar 

  44. Tuschl T (2002) Expanding small RNA interference. Nat Biotechnol 20:500–505

    Article  CAS  Google Scholar 

  45. Kaykas A, Moon RT (2004) A plasmid-based system for expressing small interfering RNA libraries in mammalian cells. BMC Cell Biol 5:1–11

    Article  Google Scholar 

  46. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Taghikhani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yavari, K., Taghikhani, M., Ghannadi Maragheh, M. et al. Downregulation of IGF-IR expression by RNAi inhibits proliferation and enhances chemosensitization of human colon cancer cells. Int J Colorectal Dis 25, 9–16 (2010). https://doi.org/10.1007/s00384-009-0783-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-009-0783-2

Keywords

Navigation