Skip to main content
Log in

1H-NMR-based metabolomics of tumor tissue for the metabolic characterization of rat hepatocellular carcinoma formation and metastasis

  • Research Article
  • Published:
Tumor Biology

Abstract

The high mortality figures for hepatocellular carcinoma (HCC) are mostly due to high recurrence and metastasis rates. However, the metabolic characteristics of HCC metastasis have not been studied extensively. In this study, we attempted to elucidate the metabolite profile of HCC formation and metastasis through proton nuclear magnetic resonance (1H-NMR)-based metabolomics. We first established a hepatocellular carcinoma with lung metastasis (HLM) rat model by exposure to diethylnitrosamine. Fifteen rats were then divided into three groups based on pathologic changes: HCC, HLM, and controls. The metabolite profiles of extracts from tumor tissue were obtained using high-resolution 1H-NMR. One-way ANOVA was used to compare the metabolite levels among the three groups. Multivariate statistical analysis (specifically, unsupervised principal components analysis and supervised partial least squares discriminant analysis (PLS-DA)) were used for HCC and HLM metabolite profiling and data interpretation. PLS-DA models could discern HCC or HLM rats from normal (control) rats. Tumor tissue from HLM showed changes in glucose, lactate, choline, lipids, and some amino acids such as glycine. The results of this pilot study suggest that alterations in glycolysis and the metabolism of glycine and choline occur during HCC invasion and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108. doi:10.3322/canjclin.55.2.74.

    Article  PubMed  Google Scholar 

  2. Bruix J, Llovet JM. Prognostic prediction and treatment strategy in hepatocellular carcinoma. Hepatology. 2002;35:519–24. doi:10.1053/jhep.2002.32089.

    Article  PubMed  Google Scholar 

  3. Kawano Y, Sasaki A, Kai S, Endo Y, Iwaki K, Uchida H, et al. Prognosis of patients with intrahepatic recurrence after hepatic resection for hepatocellular carcinoma: a retrospective study. Eur J Surg Oncol. 2009;35:174–9. doi:10.1016/j.ejso.2008.01.027.

    CAS  PubMed  Google Scholar 

  4. Song PM, Bao HM, Yu YB, Xue Y, Yun D, Zhang Y, et al. Comprehensive profiling of metastasis-related proteins in paired hepatocellular carcinoma cells with different metastasis potentials. Proteomics Clin Appl. 2009;3:841–52. doi:10.1002/prca.200780131.

    Article  CAS  PubMed  Google Scholar 

  5. Wu JC, Sun BS, Ren N, Ye QH, Qin LX. Genomic aberrations in hepatocellular carcinoma related to osteopontin expression detected by array-CGH. J Cancer Res Clin Oncol. 2010;136:595–601. doi:10.1007/s00432-009-0695-0.

    Article  CAS  PubMed  Google Scholar 

  6. Lindon JC, Nicholson JK. Analytical technologies for metabonomics and metabolomics, and multi-omic information recovery. TrAC Trend Anal Chem. 2008;27:194–204. doi:10.1016/j.trac.2007.08.009.

    Article  CAS  Google Scholar 

  7. Griffin JL, Bollard ME. Metabolomics: its potential as a tool in toxicology for safety assessment and data integration. Curr Drug Metab. 2004;5:389–98. doi:10.2174/1389200043335432.

    Article  CAS  PubMed  Google Scholar 

  8. Nicholson JK, Lindon JC, Holmes E. ‘Metabolomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29:1181–9. doi:10.1080/004982599238047.

    Article  CAS  PubMed  Google Scholar 

  9. Ma YL, Qin HL, Liu WJ, Peng JY, Huang L, Zhao XP, et al. Ultra-high performance liquid chromatography–mass spectrometry for the metabolomic analysis of urine in colorectal cancer. Dig Dis Sci. 2009;54:2655–62. doi:10.1007/s10620-008-0665-4.

    Article  CAS  Google Scholar 

  10. Whitehead TL, Emmons TK. Applying in vitro NMR spectroscopy and H-1 NMR metabolomics to breast cancer characterization and detection. Prog Nucl Magn Reson Spectrosc. 2005;47:165–74. doi:10.1016/j.pnmrs.2005.09.001.

    Article  CAS  Google Scholar 

  11. Yang Y, Li C, Nie X, Feng X, Chen W, Yue Y, et al. Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. J Proteome Res. 2007;6:2605–14. doi:10.1021/pr070063h.

    Article  CAS  PubMed  Google Scholar 

  12. Trygg J, Holmes E, Lundstedt T. Chemometrics in metabolomics. J Proteome Res. 2007;6:469–79. doi:10.1021/pr060594q.

    Article  CAS  PubMed  Google Scholar 

  13. Lindon JC, Holmes E, Nicholson JK. Pattern recognition methods and applications in biomedical magnetic resonance. Prog Nucl Magn Reson Spectrosc. 2001;39:1–40. doi:10.1016/S0079-6565(00)00036-4.

    Article  CAS  Google Scholar 

  14. Whelehan OP, Earll ME, Johansson E, Toft M, Eriksson L. Detection of ovarian cancer using chemometric analysis of proteomic profiles. Chemometr Intell Lab Syst. 2006;84:82–7. doi:10.1016/j.chemolab.2006.03.008.

    Article  CAS  Google Scholar 

  15. Sivaramakrishnan V, Niranjali Devaraj S. Morin regulates the expression of NF-κB-p65, COX-2 and matrix metalloproteinases in diethylnitrosamine induced rat hepatocellular carcinoma. Chemi Biol Interact. 2009;180:353–9. doi:10.1016/j.cbi.2009.02.004.

    Article  CAS  Google Scholar 

  16. Park DH, Shin JW, Park SK, Seo JN, Li L, Jang JJ, Lee MJ. Diethylnitrosamine (DEN) induces irreversible hepatocellular carcinogenesis through overexpression of G1/S-phase regulatory proteins in rat. Toxicol Lett. 2009;191:321–6. doi:10.1016/j.toxlet.2009.09.016.

    Article  CAS  PubMed  Google Scholar 

  17. Bartsch H, Hietanen E, Malaveille C. Carcinogenic nitrosamines: free radical aspects of their action. Free Radic Biol Med. 1989;7:637–44. doi:10.1016/0891-5849(89)90144-5.

    Article  CAS  PubMed  Google Scholar 

  18. Jose JK, Kuttan R, Bhattacharya RK. Effect of Emblica officinalis extract on hepatocarcinogenesis and carcinogen metabolism. J Clin Biochem Nutr. 1998;25:31–9.

    Google Scholar 

  19. Gavaghan CL, Wilson ID, Nicholson JK. Physiological variation in metabolic phenotyping and functional genomic studies: use of orthogonal signal correction and PLS-DA. FEBS Lett. 2002;530:191–6. doi:10.1016/S0014-5793(02)03476-2.

    Article  CAS  PubMed  Google Scholar 

  20. Garrod S, Bollard ME, Nicholls AW, Connor SC, Connelly J, Nicholson JK, et al. Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat. Chem Res Toxicol. 2005;18:115–22. doi:10.1021/tx0498915.

    Article  CAS  PubMed  Google Scholar 

  21. Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nature Rev Cancer. 2002;2:683–93. doi:10.1038/nrc882.

    Article  CAS  Google Scholar 

  22. Mochiki E, Kuwano H, Katoh H, Asao T, Oriuchi N, Endo K. Evaluation of 18F-2-deoxy-2-fluoro-d-glucose positron emission tomography for gastric cancer. World J Surg. 2004;28:247–53. doi:10.1007/s00268-003-7191-5.

    Article  PubMed  Google Scholar 

  23. Montcourrier P, Silver I, Farnoud R, Bird I, Rochefort H. Breast cancer cells have a high capacity to acidify extracellular milieu by a dual mechanism. Clin Exp Metastasis. 1997;15:382–92.

    Article  CAS  PubMed  Google Scholar 

  24. Schlappack OK, Zimmermann A, Hill RP. Glucose starvation and acidosis: effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells. Br J Cancer. 1991;64:663–70.

    CAS  PubMed  Google Scholar 

  25. Martinez-Zaguilan R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ. Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis. 1996;14:176–86. doi:10.1007/BF00121214.

    Article  CAS  PubMed  Google Scholar 

  26. Morse DL, Carroll D, Day S, Gray H, Sadarangani P, Murthi S, et al. Characterization of breast cancers and therapy response by MRS and quantitative gene expression profiling in the choline pathway. NMR Biomed. 2009;22:114–27. doi:10.1002/nbm.1318.

    Article  CAS  PubMed  Google Scholar 

  27. Muscaritoli M, Conversano L, Petti MC, Torelli GF, Cascino A, Mecarocci S, et al. Plasma amino acid concentrations in patients with acute myelogenous leukemia. Nutrition. 1999;15:195–9. doi:10.1016/S0899-9007(98)00179-8. Erratum in: Nutrition 15:828.

    Article  CAS  PubMed  Google Scholar 

  28. Lai HS, Lee JC, Lee PH, Wang ST, Chen WJ. Plasma free amino acid profile in cancer patients. Semin Cancer Biol. 2005;15:267–76. doi:10.1016/j.semcancer.2005.04.003.

    Article  CAS  PubMed  Google Scholar 

  29. Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, et al. Human l-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 2001;1514:291–302. doi:10.1016/S0005-2736(01)00384-4.

    Article  CAS  PubMed  Google Scholar 

  30. Chance WT, Cao L, Kim MW, Nelson JL, Fischer JE. Reduction of tumor growth following treatment with a glutamine antimetabolite. Life Sci. 1988;42:87–94. doi:10.1016/0024-3205(88)90627-3.

    Article  CAS  PubMed  Google Scholar 

  31. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–4. doi:10.1038/nature07762.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xianzhong Yan (National Center of Biomedical Analysis, Beijing, China) for his valuable technical assistance. This research was funded through a grant from the National Natural Science Foundation of the People’s Republic of China, No. 30571818.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongfang Li.

Additional information

Juan Wang and Shu Zhang contribute to this paper equally as the first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Zhang, S., Li, Z. et al. 1H-NMR-based metabolomics of tumor tissue for the metabolic characterization of rat hepatocellular carcinoma formation and metastasis. Tumor Biol. 32, 223–231 (2011). https://doi.org/10.1007/s13277-010-0116-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-010-0116-7

Keywords

Navigation