Skip to main content

Advertisement

Log in

Heat-shock protein expression in leukemia

  • Research Article
  • Published:
Tumor Biology

Abstract

Heat-shock proteins (Hsps) are thought to play a role in the development of cancer and to modulate tumor response to cytotoxic therapy. In this study, Hsp27, Hsp60, Hsp90α, and HspBP1 gene expression was investigated in human leukemia cell lines as well as in leukemia cells derived from patients with the onset of the disease. Hsp70 membrane expression and expression of Hsp27, Hsp60, Hsp70, Hsp90α, and HspBP1 genes were also tested in samples from leukemia patients. Relative Hsps gene expression was examined in human leukemia cell lines and also in patients, using real-time quantitative reverse-transcriptase polymerase chain reaction (RT-PCR). Hsp70 cell surface expression was studied in patients with leukemia onset using flow cytometry. All tested cell lines showed significantly increased expression of Hsp60, Hsp90α, and HspBP1 genes compared with a cohort of healthy controls; additionally there was increased Hsp27 expression except for Jurkat and CCRF cells. Significantly higher gene expression of Hsp27, Hsp60, Hsp90α, and HspBP1 was observed in the peripheral blood of patients compared with bone marrow and healthy control samples, while Hsp70 expression was without any significant difference among cohorts. Hsp70 cell surface expression was found on defrosted and cultured leukemia cells but not on unprocessed biological samples from patients. Leukemia cells showed a heterogeneous pattern of Hsp gene expression among leukemia cell lines as well as in peripheral blood and bone marrow of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ciocca DR, Fanelli MA, Cuello-Carrion FD, Calderwood SK. Implications of heat shock proteins in carcinogenesis and cancer progression. In: Calderwood SK, Sherman MY, Ciocca DR, editors. Heat shock proteins in cancer, Vol. 2. Dordrech: Springer; 2007. p. 31–51.

    Chapter  Google Scholar 

  2. Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M. Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J. 1998;17:6124–34.

    Article  CAS  PubMed  Google Scholar 

  3. Garrido C, Ottavi P, Fromentin A, Hammann A, Arrigo AP, Chauffert B, et al. HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res. 1997;57:2661–7.

    CAS  PubMed  Google Scholar 

  4. Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E. HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J. 1999;13:2061–70.

    CAS  PubMed  Google Scholar 

  5. Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol. 2000;2:645–52.

    Article  CAS  PubMed  Google Scholar 

  6. Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula SM, Kumar V, et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 2000;19(16):4310–22.

    Article  CAS  PubMed  Google Scholar 

  7. Xanthoudakis S, Roy S, Rasper D, Hennessay T, Aubin Y, Cassady R, et al. Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J. 1999;18:2049–56.

    Article  CAS  PubMed  Google Scholar 

  8. Milani V, Stangl S, Issels R, Gehrmann M, Wagner B, Hube K, et al. Anti-tumor activity of patient-derived NK cells after cell-based immunotherapy-a case report. J Transl Med. 2009;7:50.

    Article  PubMed  Google Scholar 

  9. Multhoff G, Botzler C, Wiesnet M, Müller E, Meier T, Wilmanns W, et al. A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer. 1995;61(2):272–9.

    Article  CAS  PubMed  Google Scholar 

  10. Shin BK, Wang H, Yim AM, Le Naour F, Brichory F, Jang JH, et al. Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem. 2003;278:7607–16.

    Article  CAS  PubMed  Google Scholar 

  11. Gehrmann M, Pfister K, Hutzler P, Gastpar R, Margulis B, Multhoff G, et al. Effects of antineoplastic agents on cytoplasmic and membrane-bound heat shock protein 70 (Hsp70) levels. Biol Chem. 2002;383:1715–25.

    Article  CAS  PubMed  Google Scholar 

  12. Ferrarini M, Heltai S, Zocchi MR, Rugarli C. Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer. 1992;51:613–9.

    Article  CAS  PubMed  Google Scholar 

  13. Hantschel M, Pfister K, Jordan A, Scholz R, Andreesen R, Schmitz G, et al. Hsp70 plasma membrane expression on primarz tumor biopsy material and bone marrow of leukemic patients. Cell Stress Chaperones. 2000;5:438–42.

    Article  CAS  PubMed  Google Scholar 

  14. Gehrmann M, Schmetzer H, Eissner G, Haferlach T, Hiddenmann W, Multhoff G. Membrane-bound heat shock protein 70 (Hsp70) in acute myeloid leukemia: a tumor specific recognition structure for the cytolytic activity of autologous NK cells. Haematologica. 2003;88:474–6.

    PubMed  Google Scholar 

  15. Raynes D, Guerriero V. Inhibition of Hsp70 ATPase activity and protein renaturation by a novel Hsp70-binding protein. J Biol Chem. 1998;273:32883–8.

    Article  CAS  PubMed  Google Scholar 

  16. Kabani M, McLellan C, Raynes DA, Guerriero V, Brodsky JL. HspBP1, a homologue of the yeast Fes1 and Sls1 proteins, is an Hsc70 nucleotide exchange factor. FEBS Lett. 2002;531(2):339–42.

    Article  CAS  PubMed  Google Scholar 

  17. Raynes DA, Graner MW, Bagatell R, McLellan C, Guerriero V. Increased expression of HspBP1 in tumors. Tumor Biol. 2003;24:281–5.

    Article  CAS  Google Scholar 

  18. Hromadnikova I, Volchenkov R, Sedlackova L, Spacek M, Kozak T. Expression of heat shock protein 70 and NKG2D ligands in acute myeloid leukemia cell lines. J Recept Signal Transduct. 2010;30(3):161–9.

    Article  CAS  Google Scholar 

  19. Hromadnikova I, Sedlackova L. Analysis of cell surface and relative gene expression of heat shock protein 70 in human leukemia cell lines. Leuk Lymphoma. 2008;49(3):570–6.

    Article  CAS  PubMed  Google Scholar 

  20. Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975;45(3):321–34.

    CAS  PubMed  Google Scholar 

  21. Schneider U, Schwenk HU, Bornkamm G. Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer. 1977;19(5):621–6.

    Article  CAS  PubMed  Google Scholar 

  22. Foley GE, Lazarus H, Farber S, Uzman BG, Boone BA, McCarthy RE. Continuous culture of human lymphoblasts from peripheral blood of a child with acute leukemia. Cancer. 1965;18:522–9.

    Article  CAS  PubMed  Google Scholar 

  23. Allen RJ, Smith SD, Moldwin RL, Lu MM, Giordano L, Vignon C, et al. Establishment and characterization of a megakaryoblast cell line with amplification of MLL. Leukemia. 1998;12:1119–27.

    Article  CAS  PubMed  Google Scholar 

  24. Collins SJ, Gallo RC, Gallagher RE. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature. 1977;270:347–9.

    Article  CAS  PubMed  Google Scholar 

  25. Wang C, Curtis JE, Minden MD, McCulloch EA. Expression of a retinoic acid receptor gene in myeloid leukemia cells. Leukemia. 1989;3:264–9.

    CAS  PubMed  Google Scholar 

  26. Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer. 1980;26:171–6.

    Article  CAS  PubMed  Google Scholar 

  27. Kitamura T, Tange T, Terasawa T, Chiba S, Kuwaki T, Miyagawa K, et al. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J Cell Physiol. 1989;140:323–34.

    Article  CAS  PubMed  Google Scholar 

  28. Morgan DA, Class R, Soslau G, Brodsky I. Cytokine-mediated erythroid maturation in megakaryoblastic human cell line HU-3. Exp Hematol. 1997;25:1378–85.

    CAS  PubMed  Google Scholar 

  29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the \( {{2}^{ - \Delta \Delta {\rm{Ct}}}} \) method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen TT, Gehrmann M, Zlacka D, Sosna A, Vavrincova P, Multhoff G, et al. Heat shock protein 70 membrane expression on fibroblast-like synovial cells derived from synovial tissue of patients with rheumatoid and juvenile idiopathic arthritis. Scand J Rheumatol. 2006;35:447–53.

    Article  CAS  PubMed  Google Scholar 

  31. Farkas B, Hantschel M, Magyarlaki M, Becker B, Scherer K, Landthaler M, et al. Heat shock protein 70 membrane expression and melanoma-associated marker phenotype in primary and metastatic melanoma. Melanoma Res. 2003;13:147–52.

    Article  CAS  PubMed  Google Scholar 

  32. Tanimura S, Hirano AI, Hashizume J, Yasunaga M, Kawabata T, Ozaki K, et al. Anticancer drugs up-regulate HspBP1 and thereby antagonize the prosurvival function of Hsp70 in tumor cells. J Biol Chem. 2007;282(49):35430–9.

    Article  CAS  PubMed  Google Scholar 

  33. Schepers H, Geugien M, van der Toorn M, Bryantsev AL, Kampinga HH, Eggen BJ, et al. HSP27 protects AML cells against VP-16-induced apoptosis through modulation of p38 and c-Jun. Exp Hematol. 2005;33(6):660–70.

    Article  CAS  PubMed  Google Scholar 

  34. Madsen PS, Hokland P, Clausen N, Ellegaard J, Hokland M. Differential expression levels of the heat shock protein 27 isoforms in pediatric normal, nonleukemic and common acute lymphoblastic leukemia B-cell precursors. Blood. 1995;85(2):510–21.

    CAS  PubMed  Google Scholar 

  35. Kasimir-Bauer S, Beelen D, Flasshove M, Noppeney R, Seeber S, Scheulen ME. Impact of the expression of P glycoprotein, the multidrug resistance-related protein, bcl-2, mutant p53, and heat shock protein 27 on response to induction therapy and long-term survival in patients with de novo acute myeloid leukemia. Exp Hematol. 2002;30(11):1302–8.

    Article  CAS  PubMed  Google Scholar 

  36. Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S. Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of Jurkat cells. EMBO J. 1999;18(8):2040–8.

    Article  CAS  PubMed  Google Scholar 

  37. Wehner PS, Nielsen B, Hokland M. Expression levels of hsc70 and hsp60 are developmentally regulated during B-cell maturation and not associated to childhood c-ALL at presentation or relapse. Eur J Haematol. 2003;71(2):100–8.

    Article  CAS  PubMed  Google Scholar 

  38. Emura I, Chou T, Imai Y, Kakihar T, Ishiguro T, Naito M, et al. Overexpression of heat shock protein 60 and the survival of blast in acute myeloid leukemia after induction therapy. Leukemia. 2000;14(8):1529–30.

    Article  CAS  PubMed  Google Scholar 

  39. Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol. 2000;2(8):469–75.

    Article  CAS  PubMed  Google Scholar 

  40. Stuart JK, Myszka DG, Joss L, Mitchell RS, McDonald SM, Xie Z, et al. Characterization of interactions between the anti-apoptotic protein BAG-1 and Hsp70 molecular chaperones. J Biol Chem. 1998;273:22506–14.

    Article  CAS  PubMed  Google Scholar 

  41. Multhoff G, Mizzen L, Winchester CC, Milner CM, Wenk S, Eissner G, et al. Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol. 1999;27(11):1627–36.

    Article  CAS  PubMed  Google Scholar 

  42. Multhoff G. Heat shock protein 72 (HSP72), a hyperthermia-inducible immunogenic determinant on leukemic K562 and Ewing’s sarcoma cells. Int J Hyperthermia. 1997;13(1):39–48.

    Article  CAS  PubMed  Google Scholar 

  43. Gehrmann M, Radons J, Molls M, Multhoff G. The therapeutic implications of clinically applied modifiers of heat shock protein 70 (Hsp70) expression by tumor cells. Cell Stress Chaperones. 2008;13(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  44. Steiner K, Graf M, Hecht K, Reif S, Rossbacher L, Pfister K, et al. High HSP70-membrane expression on leukemic cells from patients with acute myeloid leukemia is associated with a worse prognosis. Leukemia. 2006;20(11):2076–9.

    Article  CAS  PubMed  Google Scholar 

  45. Multhoff G, Pfister K, Gehrmann M, Hantschel M, Gross C, Hafner M, et al. A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones. 2001;6(4):337–44.

    Article  CAS  PubMed  Google Scholar 

  46. Sreedhar AS, Kalmar E, Csermely P, Shen YF. Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett. 2004;562:11–5.

    Article  PubMed  Google Scholar 

  47. An WG, Schulte TW, Neckers LM. The heat shock protein 90 antagonist geldanamycin alters chaperone association with p210bcr-abl and v-src proteins before their degradation by the proteasome. Cell Growth Differ. 2000;11:355–60.

    CAS  PubMed  Google Scholar 

  48. Minami Y, Kiyoi H, Yamamoto Y, Yamamoto K, Ueda R, Saito H, et al. Selective apoptosis of tandemly duplicated FLT3- transformed leukemia cells by Hsp90 inhibitors. Leukemia. 2002;16:1535–40.

    Article  CAS  PubMed  Google Scholar 

  49. Fumo G, Akin C, Metcalfe DD, Neckers L. 17-allylamino-17-demethoxygeldanamycin (17-AAG) is effective in down-regulating mutated, constitutively activated KIT protein in human mast cells. Blood. 2004;103:1078–84.

    Article  CAS  PubMed  Google Scholar 

  50. Ochel HJ, Gademan G. Heat-shock protein 90: potential involvement in the pathogenesis of malignancy and pharmacological intervention. Onkologie. 2002;25:466–73.

    Article  PubMed  Google Scholar 

  51. Yufu Y, Nishimura J, Nawata H. High constitutive expression of heat shock protein 90 alpha in human leukemia cells. Leuk Res. 1992;16(6–7):597–605.

    Article  CAS  PubMed  Google Scholar 

  52. Jerome V, Vourch C, Baulieu EE, Catelli MG. Cell cycle regulation of the chicken hsp90 alpha expression. Exp Cell Res. 1993;205:44–51.

    Article  CAS  PubMed  Google Scholar 

  53. Jerome V, Leger J, Devin J, Baulieu EE, Catelli MG. Growth factors acting via tyrosine kinase receptors induce HSP90 alpha gene expression. Growth Factors. 1991;4:317–27.

    Article  CAS  PubMed  Google Scholar 

  54. Xiao K, Liu W, Qu S, Sun H, Tang J. Study of heat shock protein HSP90 alpha, HSP70, HSP27 mRNA expression in human acute leukemia cells. J Tongji Med Univ. 1996;16(4):212–6.

    Article  CAS  PubMed  Google Scholar 

  55. Flandrin P, Guyotat D, Duval A, Cornillon J, Tavernier E, Nadal N, et al. Significance of heat-shock protein (HSP) 90 expression in acute myeloid leukemia cells. Cell Stress Chaperones. 2008;13(3):357–64.

    Article  CAS  PubMed  Google Scholar 

  56. Beere HM. Stressed to death: regulation of apoptotic signaling pathways by the heat shock proteins. Sci STKE. 2001;(93):re1.

Download references

Acknowledgements

The authors would like to thank Dr. Michelle Le Beau from the University of Chicago Cancer Research Centre (USA), Prof. Dr. Jerzy Adamski from Helmholtz Zentrum München (Germany) and Professor Doris A. Morgan, Drexel University College of Medicine, Philadelphia (USA), Prof. Anne Dickinson (University of Newcastle upon Tyne, UK) and Prof. Gabriele Multhoff (Multimmune GmBH, Munich, Germany) for the kind gifts of cell lines. We would like to thank colleagues Roman Volchenkov and Olga Koprivova (Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University in Prague, Czech Republic) for collaboration.

This project was funded by TRANSNET (No. MRTN-CT-2004-512253) and STEMDIAGNOSTICS (No. LSHB-CT-2007-037703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Sedlackova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedlackova, L., Spacek, M., Holler, E. et al. Heat-shock protein expression in leukemia. Tumor Biol. 32, 33–44 (2011). https://doi.org/10.1007/s13277-010-0088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-010-0088-7

Keywords

Navigation