Skip to main content

Advertisement

Log in

PI3-kinase/Wnt association mediates COX-2/PGE2 pathway to inhibit apoptosis in early stages of colon carcinogenesis: chemoprevention by diclofenac

  • Research Article
  • Published:
Tumor Biology

Abstract

In addition to having anti-inflammatory properties, non-steroidal anti-inflammatory drugs (NSAIDs) inhibit neoplastic cell proliferation by inducing apoptosis. Inhibition of cyclooxygenase-2 (COX-2) seemed to be the principal target of NSAIDs, as it is overexpressed in several cancers and catalyzes the synthesis of prostaglandin E2 (PGE2), the critical pro-inflammatory molecule. A major role for phosphatidylinositol-3 kinase (PI3-kinase) pathway activation in human tumors has been more recently established. The present study explored the role of PI3-kinase and Wnt molecular pathways in COX-2 and PGE2 production as well as NSAIDs' chemopreventive effect in colon cancer. 1,2-dimethylhydrazine (DMH) was used for experimental colon cancer model in rat and diclofenac as the preferential COX-2 selective chemopreventive agent. Expression of caspase-3 and caspase-9 was checked in the colonic tissue by immunofluorescence. A decrease was seen in their expressions, indicative of inhibition of apoptosis in the present model. COX-2 mRNA expression as well as PGE2 levels was elevated after DMH treatment; however, COX-1 mRNA expression was unaltered as seen by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. DMH also activated PI3-kinase, Akt, Wnt, and β-catenin expressions but reduced the glycogen synthase kinase-3β (GSK-3β) levels. Co-administration of diclofenac with DMH increased the mRNA expression of GSK-3β while inactivating PI3-kinase, Akt, Wnt, and β-catenin. The study suggests that activation of PI3-kinase and Wnt signaling is associated with COX-2/PGE2 production and in turn inhibition of apoptosis in colon cancer, while diclofenac targeted these pathways to restore apoptosis in the present system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Annealing temperatures were β-actin, 61.7°C; COX-1, 61.3°C; COX-2, 60.6°C; PI3-kinase, 57.2°C; Akt, 61.2°C; GSK-3β, 56.4°C; Wnt-1, 62.3°C; and β-catenin, 56.7°C.

References

  1. Srinivasan BD, Kulkarni PS. Inhibitors of the arachidonic acid cascade in the management of ocular inflammation. Prog Clin Biol Res. 1989;312:229–49.

    PubMed  CAS  Google Scholar 

  2. Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, et al. Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res. 2008;68(6):1732–40.

    Article  PubMed  CAS  Google Scholar 

  3. Giardiello FM, Spannhake EW, DuBois RN, Hylind LM, Robinson CR, Hubbard WC, et al. Prostaglandin levels in human colorectal mucosa: effects of sulindac in patients with familial adenomatous polyposis. Dig Dis Sci. 1998;43:311–6.

    Article  PubMed  CAS  Google Scholar 

  4. Rigas B, Goldman IS, Levine L. Altered eicosanoid levels in human colon cancer. J Lab Clin Med. 1993;122:518–23.

    PubMed  CAS  Google Scholar 

  5. Buchanan FG, Wang D, Bargiacchi F, DuBois RN. Prostaglandin E2 regulates cell migration via the intracellular activation of the epidermal growth factor receptor. J Biol Chem. 2003;278:35451–7.

    Article  PubMed  CAS  Google Scholar 

  6. Pai R, Nakamura T, Moon WS, Tarnawski AS. Prostaglandins promote colon cancer cell invasion: signaling by cross-talk between two distinct growth factor receptors. FASEB J. 2003;17:1640–7.

    Article  PubMed  CAS  Google Scholar 

  7. Shao J, Lee SB, Guo H, Evers BM, Sheng H. Prostaglandin E2 stimulates the growth of colon cancer cells via induction of amphiregulin. Cancer Res. 2003;63:5218–23.

    PubMed  CAS  Google Scholar 

  8. Sheng H, Shao J, Morrow JD, Beauchamp RD, DuBois RN. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res. 1998;58:362–6.

    PubMed  CAS  Google Scholar 

  9. Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, et al. Suppression of intestinal polyposis in ApcΔ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell. 1996;87(5):803–9.

    Article  PubMed  CAS  Google Scholar 

  10. Gupta RA, DuBois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer. 2001;1:11–21.

    Article  PubMed  CAS  Google Scholar 

  11. Ricchi P, Zarrilli R, Di Palma A, Acquaviva AM. Non-steroidal anti-inflammatory drugs in colorectal cancer: from prevention to therapy. Br J Cancer. 2003;24:803–7.

    Article  CAS  Google Scholar 

  12. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, et al. Gene expression profiles in normal and cancer cells. Science. 1997;276:1268–72.

    Article  PubMed  CAS  Google Scholar 

  13. Leone V, di Palma A, Ricchi P, Acquaviva F, Giannouli M, Di Prisco AM, et al. PGE2 inhibits apoptosis in human adenocarcinoma Caco-2 cell line through RAS-PI3-kinase association and cAMP dependent kinase A activation. Am J Physiol Gastrointest Liver Physiol. 2007;293(4):673–81.

    Article  CAS  Google Scholar 

  14. Wang Q, Wang X, Hernandez A, Kim S, Evers BM. Inhibition of the phosphatidylinositol 3-kinase pathway contributes to HT-29 and Caco-2 intestinal cell differentiation. Gastroenterology. 2001;120:1381–92.

    Article  PubMed  CAS  Google Scholar 

  15. Zheng WH, Kar S, Quirion R. Insulin-like growth factor-1-induced phosphorylation of the Forkhead Family Transcription Factor FKHRL1 is mediated by Akt kinase in PC12 cells. J Biol Chem. 2000;275:39152–8.

    Article  PubMed  CAS  Google Scholar 

  16. Manoukian AS, Woodgett JR. Role of glycogen synthase kinase 3 in cancer: regulation by Wnts and other signaling pathways. Adv Cancer Res. 2002;84:203–29.

    Article  PubMed  CAS  Google Scholar 

  17. Shakoori A, Ougolkov A, Yu ZW, Zhang B, Modarressi MH, Billadeau DD, et al. Deregulated GSK3β activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochem Biophys Res Commun. 2005;334(4):1365–73.

    Article  PubMed  CAS  Google Scholar 

  18. Jansson EA, Are A, Greicius G, Kuo IC, Kelly D, Arulampalam V, et al. The Wnt/β-catenin signaling pathway targets PPARγ activity in colon cancer cells. Proc Natl Acad Sci USA. 2005;102(5):1460–5.

    Article  PubMed  CAS  Google Scholar 

  19. Kaur J, Sanyal SN. Association of PI3-kinase and Wnt signaling in non-steroidal anti-inflammatory drug-induced apoptosis in experimental colon cancer. Am J Biomed Sci. 2009;1(4):395–405.

    Article  CAS  Google Scholar 

  20. Kaur J, Sanyal SN. Induction of apoptosis as potential chemopreventive effect of dual cyclooxygenase inhibitor, diclofenac in early colon carcinogenesis. J Environ Pathol Toxicol Oncol. 2010;29(1):41–53.

    PubMed  CAS  Google Scholar 

  21. Kaur J, Sanyal SN. Oxidative stress and stress-signaling in chemoprevention of early colon cancer by diclofenac. Am J Biomed Sci. 2010;2(1):63–78.

    Article  CAS  Google Scholar 

  22. Brown JR, DuBois RN. COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol. 2005;23:2840–55.

    Article  PubMed  CAS  Google Scholar 

  23. He TC, Chan TA, Vogelstein B, Kinzler KW. PPARδ is an APC-regulated target of non-steroidal anti-inflammatory drugs. Cell. 1999;99:335–45.

    Article  PubMed  CAS  Google Scholar 

  24. Yamamoto Y, Yin MJ, Lin KM, Gaynor RB. Sulindac inhibits activation of the NF-κB pathway. J Biol Chem. 1999;274:27307–14.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang X, Morham S, Langenbach R, Young DA. Malignant transformation and antineoplastic actions of non-steroidal anti-inflammatory drugs (NSAIDs) on cyclooxygenase-null embryo fibroblasts. J Exp Med. 1999;190:445–50.

    Article  Google Scholar 

  26. Ricchi P, Palma AD, Matola TD, Apicella A, Fortunato R, Zarrilli R, et al. Aspirin protects Caco-2 cells from apoptosis after serum deprivation through the activation of a phosphatidylinositol 3-kinase/AKT/p21Cip/WAF1 pathway. Mol Pharmacol. 2003;64:407–14.

    Article  PubMed  CAS  Google Scholar 

  27. Di Popolo A, Memoli A, Apicella A, Tuccillo C, di Palma A, Ricchi P, et al. IGF-II/IGF-I receptor pathway up-regulates COX-2 mRNA expression and PGE2 synthesis in Caco-2 human colon carcinoma cells. Oncogene. 2000;19:5517–24.

    Article  PubMed  CAS  Google Scholar 

  28. Subbaramaiah K, Dannenberg AJ. Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends Pharmacol Sci. 2003;24:96–102.

    Article  PubMed  CAS  Google Scholar 

  29. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem. 1999;68:383–424.

    Article  PubMed  CAS  Google Scholar 

  30. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998;282:1318–21.

    Article  PubMed  CAS  Google Scholar 

  31. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW, et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC/colon carcinoma. Science. 1997;275:1784–7.

    Article  PubMed  CAS  Google Scholar 

  32. Wenzel S, Abdallah Y, Helmig S, Schäfer C, Piper HM, Schlüter KD. Contribution of PI3-kinase isoforms to angiotensin II- and α-adrenoceptor-mediated signaling pathways in cardiomyocytes. Cardiovasc Res. 2006;71:352–62.

    Article  PubMed  CAS  Google Scholar 

  33. Warren CA, Paulhill KJ, Davidson LA, Lupton JR, Taddeo SS, Hong MY, et al. Quercetin may suppress rat aberrant crypt foci formation by suppressing inflammatory mediators that influence proliferation and apoptosis. J Nutr. 2009;139:101–5.

    PubMed  CAS  Google Scholar 

  34. Lee IH, Dinudom A, Perez AS, Kumar S, Cook DI. Akt mediates the effect of insulin on epithelial sodium channels by inhibiting Nedd4-2. J Biol Chem. 2007;82(41):29866–73.

    Article  CAS  Google Scholar 

  35. Morris DC, Zhang ZG, Wang Y, Zhang RL, Gregg S, Liu XS, et al. Wnt expression in the adult rat subventricular zone after stroke. Neurosci Lett. 2007;418(2):170–4.

    Article  PubMed  CAS  Google Scholar 

  36. Wang QM, Zhang Y, Yang KM, Zhou HY, Yang HJ. Wnt/β-catenin signaling pathway is active in pancreatic development of rat embryo. World J Gastroenterol. 2006;12(16):2615–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Financial assistance from the Council of Scientific and Industrial Research (CSIR), Government of India (37(1308)/07/EMR-II), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Nath Sanyal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, J., Sanyal, S.N. PI3-kinase/Wnt association mediates COX-2/PGE2 pathway to inhibit apoptosis in early stages of colon carcinogenesis: chemoprevention by diclofenac. Tumor Biol. 31, 623–631 (2010). https://doi.org/10.1007/s13277-010-0078-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-010-0078-9

Keywords

Navigation