Skip to main content
Log in

Piperlongumine targets NF-κB and its downstream signaling pathways to suppress tumor growth and metastatic potential in experimental colon cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

NF-κB is the principle transcription factor and plays the central role in orchestrating chronic inflammation by regulating levels of cytokines, chemokines and growth factors. Piperlongumine (PL), a major alkaloid in the fruit of Piper longum Linn. has gained worldwide attention for its anticancer properties, however, its mechanism of action in the chemoprevention of colon cancer has not been investigated yet. Therefore, the present study was designed to elucidate the underlying molecular mechanism of PL in preventing DMH/DSS induced experimental colon cancer in mice. In the current study well established DMH/DSS induced experimental colon cancer mouse model was used to demonstrate the chemopreventive potential of PL. The expression of NF-κB and its downstream target proteins was evaluated mainly through western blotting. In addition, CAM assay, immunohistochemical staining and gelatin zymography was used to show anti-angiogenic and anti-invasive potential of PL. Additionally, important tumor biomarkers such as TSA, LASA, LDH and IL-6 levels were also estimated. The results of current study showed that PL was capable to inhibit NF-κB activation as well as its nuclear translocation. PL administration to DMH/DSS treated mice also inhibited the NF-κB downstream signaling cascades such as including COX-2 pathway, JAK/STAT pathway, β-catenin, Notch signaling pathway, angiogenesis and epithelial to mesenchymal transition pathway. The findings of the present study have claimed PL as promising chemopreventive agent for colon cancer with pleiotropic action. The current study emphasizes that regular consumption of PL can be an effective approach in the prevention of colon cancer in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AB:

Alcian blue

APC:

Adenomatous polyposis coli

COX-2:

Cyclooxygenase 2

DMH:

1,2-Dimethylhydrazine

DMSO:

Dimethylsulfoxide

DSS:

Dextran sulphate sodium salt

EDTA:

Ethylenediaminetetraacetic acid

EMT pathway:

Epithelial to mesenchymal transition pathway

GSK3β:

Glycogen synthase kinase-3β

HES:

Hairy/enhancer of split

HEY:

Hairy/enhancer-of-split related with YRPW motif protein 1

IKK:

IκB kinase

IκBα:

Inhibitory kappa Bα

JAK2:

Janus kinase 2

LASA:

Lipid associated sialic acid

LDH:

Lactate dehydrogenase

MMPs:

Matrix metalloproteinases

NF-κB:

Nuclear factor kappa B

NSAIDs:

Nonsteroidal anti-inflammatory drugs

PAS:

Periodic-acid-Schiff

PGDS:

Prostaglandin D2 synthase

PGES:

Prostaglandin E synthase

PMSF:

Phenylmethylsulfonyl fluoride

STAT3:

Signal transducer and activator of transcription3

TCF/ZEB:

T cell factor/zinc finger E-box-binding homeobox protein

TSA:

Total sialic acid

VEGF:

Vascular endothelial growth factor

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  3. Gambhir S, Vyas D, Hollis M et al (2015) Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies. World J Gastroenterol 21:3174–3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lamberti C, Lin KM, Yamamoto Y et al (2001) Regulation of β-catenin function by the IκB kinases. J Biol Chem 276:42276–42286

    Article  CAS  PubMed  Google Scholar 

  5. Johnston DA, Dong B, Hughes CCW (2009) TNF induction of jagged-1 in endothelial cells is NFκB-dependent. Gene 435:36–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun H, Chung WC, Ryu SH et al (2008) Cyclic AMP-responsive element binding protein- and nuclear factor-κB-regulated CXC chemokine gene expression in lung carcinogenesis. Cancer Prev Res 1:316–328

    Article  CAS  Google Scholar 

  7. Park BK, Zhang H, Zeng Q et al (2007) NF-κB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat Med 13:62–69

    Article  CAS  PubMed  Google Scholar 

  8. Kismali G, Ceylan A, Meral O et al (2020) Piperlongumine inhibits cell growth and enhances TRAIL-induced apoptosis in prostate cancer cells. Asian Pac J Trop Biomed 10:216–223

    Article  CAS  Google Scholar 

  9. Prasad S, Tyagi AK (2016) Historical spice as a future drug: therapeutic potential of piperlongumine. Curr Pharm Des 22:4151–4159

    Article  CAS  PubMed  Google Scholar 

  10. Ginzburg S, Golovine KV, Makhov PB et al (2014) Piperlongumine inhibits NF-κB activity and attenuates aggressive growth characteristics of prostate cancer cells. Prostate 74:177–186

    Article  CAS  PubMed  Google Scholar 

  11. Zheng J, Son DJ, Gu SM et al (2016) Piperlongumine inhibits lung tumor growth via inhibition of nuclear factor kappa B signaling pathway. Sci Rep 6:1–13

    CAS  Google Scholar 

  12. Duan C, Zhang B, Deng C et al (2016) Piperlongumine induces gastric cancer cell apoptosis and G2/M cell cycle arrest both in vitro and in vivo. Tumor Biol 37:10793–10804

    Article  CAS  Google Scholar 

  13. Roh JL, Kim EH, Park JY et al (2014) Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer. Oncotarget 5:9227–9238

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kumar S, Agnihotri N (2019) Piperlongumine, a piper alkaloid targets Ras/PI3K/Akt/mTOR signaling axis to inhibit tumor cell growth and proliferation in DMH/DSS induced experimental colon cancer. Biomed Pharmacother 109:1462–1477

    Article  CAS  PubMed  Google Scholar 

  15. Plucinsky MC, Michael Riley W, Prorok JJ, Alhadeff JA (1986) Total and lipid-associated serum sialic acid levels in cancer patients with different primary sites and differing degrees of metastatic involvement. Cancer 58:2680–2685

    Article  CAS  PubMed  Google Scholar 

  16. Katopodis N, Hirshaut Y, Geller NL, Stock CC (1982) Lipid-associated sialic acid test for the detection of human cancer. Cancer Res 42:5270–5275

    CAS  PubMed  Google Scholar 

  17. Kiyan HT, Demirci B, Başer KHC, Demirci F (2014) The in vivo evaluation of anti-angiogenic effects of Hypericum essential oils using the chorioallantoic membrane assay. Pharm Biol 52:44–50

    Article  CAS  PubMed  Google Scholar 

  18. Toth M, Sohail A, Fridman R (2012) Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography. Methods Mol Biol 878:121–135

    Article  CAS  PubMed  Google Scholar 

  19. Lin S, Li Y, Shen L et al (2017) The anti-inflammatory effect and intestinal barrier protection of HU210 differentially depend on TLR4 signaling in dextran sulfate sodium-induced murine colitis. Dig Dis Sci 62:372–386

    Article  CAS  PubMed  Google Scholar 

  20. Lim JW, Kim H, Kim KH (2001) Nuclear factor-κB regulates cyclooxyoenase-2 expression and cell proliferation in human gastric cancer cells. Lab Investig 81:349–360

    Article  CAS  PubMed  Google Scholar 

  21. McLean MH, Neurath MF, Durum SK (2014) Targeting interleukins for the treatment of inflammatory bowel disease—what lies beyond anti-TNF therapy? Inflamm Bowel Dis 20:389–397

    Article  PubMed  Google Scholar 

  22. Huber MA, Azoitei N, Baumann B et al (2004) NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114:569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smolinske SC, Hall AH, Vandenberg SA et al (1990) Toxic effects of nonsteroidal anti-inflammatory drugs in overdose: an overview of recent evidence on clinical effects and dose-response relationships. Drug Saf 5:252–274

    Article  CAS  PubMed  Google Scholar 

  24. Büll C, Stoel MA, Den Brok MH, Adema GJ (2014) Sialic acids sweeten a tumor’s life. Cancer Res 74:3199–3204

    Article  PubMed  CAS  Google Scholar 

  25. Kansal S, Negi AK, Kaur R et al (2011) Evaluation of the role of oxidative stress in chemopreventive action of fish oil and celecoxib in the initiation phase of 7,12-dimethyl benz(α)anthracene-induced mammary carcinogenesis. Tumor Biol 32:167–177

    Article  CAS  Google Scholar 

  26. Feng Y, Xiong Y, Qiao T et al (2018) Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy. Cancer Med 7:6124–6136

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pandurangan AK, Kumar SAS, Dharmalingam P, Ganapasam S (2014) Luteolin, a bioflavonoid inhibits azoxymethane-induced colon carcinogenesis: involvement of iNOS and COX-2. Pharmacogn Mag 10:S306–S310

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hussein Aziza SA, Abdel-Aal SA, Mady HA (2014) Chemopreventive effect of curcumin on oxidative stress, antioxidant status, DNA fragmentation and caspase-9 gene expression in 1,2-dimethylhydrazine-induced colon cancer in rats. Am J Biochem Mol Biol 4:22–34

    Article  CAS  Google Scholar 

  29. Betge J, Schneider NI, Harbaum L et al (2016) MUC1, MUC2, MUC5AC, and MUC6 in colorectal cancer: expression profiles and clinical significance. Virchows Arch 469:255–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li C, Zuo D, Yin L et al (2018) Prognostic value of MUC2 expression in colorectal cancer: a systematic review and meta-analysis. Gastroenterol Res Pract 2018:1–12

    Google Scholar 

  31. Wang Y, Wu X, Zhou Y et al (2016) Piperlongumine suppresses growth and sensitizes pancreatic tumors to gemcitabine in a xenograft mouse model by modulating the NF-kappa B pathway. Cancer Prev Res 9:234–244

    Article  CAS  Google Scholar 

  32. Patel M, Horgan PG, McMillan DC, Edwards J (2018) NF-κB pathways in the development and progression of colorectal cancer. Transl Res 197:43–56

    Article  CAS  PubMed  Google Scholar 

  33. Begalli F, Bennett J, Capece D et al (2017) Unlocking the NF-κB conundrum: embracing complexity to achieve specificity. Biomedicines 5:1–35

    Article  CAS  Google Scholar 

  34. Hoesel B, Schmid JA (2013) The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 12:1–15

    Article  CAS  Google Scholar 

  35. Sakamoto K, Maeda S, Hikiba Y et al (2009) Constitutive NF-κB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res 15:2248–2258

    Article  CAS  PubMed  Google Scholar 

  36. Niu M, Shen Y, Xu X et al (2015) Piperlongumine selectively suppresses ABC-DLBCL through inhibition of NF-κB p65 subunit nuclear import. Biochem Biophys Res Commun 462:326–331

    Article  CAS  PubMed  Google Scholar 

  37. Eberhart CE, Coffey RJ, Radhika A et al (1994) Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107:1183–1188

    Article  CAS  PubMed  Google Scholar 

  38. Kansal S, Vaiphei K, Agnihotri N (2014) Alterations in lipid mediated signaling and Wnt/β-catenin signaling in DMH induced colon cancer on supplementation of fish oil. Biomed Res Int 2014:1–11

    Article  Google Scholar 

  39. Yarla NS, Bishayee A, Sethi G et al (2016) Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol 40–41:48–81

    Article  PubMed  CAS  Google Scholar 

  40. Fazio V, Robertis M, Massi E et al (2011) The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. J Carcinog 10:1–22

    Article  CAS  Google Scholar 

  41. Sinicrope FA, Gill S (2004) Role of cyclooxygenase-2 in colorectal cancer. Cancer Metastasis Rev 23:63–75

    Article  CAS  PubMed  Google Scholar 

  42. O’Callaghan G, Houston A (2015) Prostaglandin E2 and the EP receptors in malignancy: possible therapeutic targets? Br J Pharmacol 172:5239–5250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Joo M, Sadikot RT (2012) PGD synthase and PGD 2 in immune response. Mediat Inflamm 2012:1–6

    Article  CAS  Google Scholar 

  44. Hata AN, Lybrand TP, Breyer RM (2005) Identification of determinants of ligand binding affinity and selectivity in the prostaglandin D2 receptor CRTH2. J Biol Chem 280:32442–32451

    Article  CAS  PubMed  Google Scholar 

  45. Vong L, Ferraz JGP, Panaccione R et al (2010) A pro-resolution mediator, prostaglandin D2, is specifically up-regulated in individuals in long-term remission from ulcerative colitis. Proc Natl Acad Sci U S A 107:12023–12027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang L, Gan Y, Zhang M et al (2016) The role of p-STAT3 as a prognostic and clinicopathological marker in colorectal cancer: a systematic review and meta-analysis. PLoS One 11:1–16

    Google Scholar 

  47. Taniguchi K, Karin M (2014) IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin Immunol 26:54–74

    Article  CAS  PubMed  Google Scholar 

  48. Prasad VG, Kawade S, Jayashree BS et al (2014) Iminoflavones combat 1,2-dimethyl hydrazine induced aberrant crypt foci development in colon cancer. Biomed Res Int 2014:1–7

    Google Scholar 

  49. Yang X, Zhang F, Wang Y et al (2013) Oroxylin a inhibits colitis-associated carcinogenesis through modulating the IL-6/STAT3 signaling pathway. Inflamm Bowel Dis 19:1990–2000

    PubMed  Google Scholar 

  50. Yang H, Qi H, Ren J et al (2014) Involvement of NF-κ B/IL-6 pathway in the processing of colorectal carcinogenesis in colitis mice. Int J Inflamm 2014:1–7

    Article  CAS  Google Scholar 

  51. Chomarat P, Banchereau J, Davoust J, Palucka AK (2000) IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 1:510–514

    Article  CAS  PubMed  Google Scholar 

  52. Cohen AN, Veena MS, Srivatsan ES, Wang MB (2009) Suppression of interleukin 6 and 8 production in head and neck cancer cells with curcumin via inhibition of Iκβ kinase. Arch Otolaryngol Head Neck Surg 135:190–197

    Article  PubMed  Google Scholar 

  53. Renuka, Agnihotri N, Singh AP, Bhatnagar A (2016) Involvement of regulatory T cells and their cytokines repertoire in chemopreventive action of fish oil in experimental colon cancer. Nutr Cancer 68:1181–1191

    Article  CAS  Google Scholar 

  54. Xiao Y, Shi M, Qiu Q et al (2016) Piperlongumine suppresses dendritic cell maturation by reducing production of reactive oxygen species and has therapeutic potential for rheumatoid arthritis. J Immunol 196:4925–4934

    Article  CAS  PubMed  Google Scholar 

  55. Song B, Zhan H, Bian Q, Gu J (2016) Piperlongumine inhibits gastric cancer cells via suppression of the JAK1,2/STAT3 signaling pathway. Mol Med Rep 13:4475–4480

    Article  CAS  PubMed  Google Scholar 

  56. Chen Z, He X, Jia M et al (2013) β-Catenin overexpression in the nucleus predicts progress disease and unfavourable survival in colorectal cancer: a meta-analysis. PLoS One 8:1–9

    CAS  Google Scholar 

  57. Ma B, Hottiger MO (2016) Crosstalk between wnt/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol 7:1–14

    Article  Google Scholar 

  58. Langner E, Rzeski W (2012) Dietary derived compounds in cancer chemoprevention. Wspolczesna Onkol 16:394–400

    Article  CAS  Google Scholar 

  59. Liu ZH, Dai XM, Du B (2015) Hes1: a key role in stemness, metastasis and multidrug resistance. Cancer Biol Ther 16:353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vinson KE, George DC, Fender AW et al (2016) The Notch pathway in colorectal cancer. Int J Cancer 138:1835–1842

    Article  CAS  PubMed  Google Scholar 

  61. Rajendran DT, Subramaniyan B, Ganeshan M (2018) Role of notch signaling in colorectal cancer. In: Role of transcription factors in gastrointestinal malignancies. Springer, Singapore, pp 305–312

    Google Scholar 

  62. Rodilla V, Villanueva A, Obrador-Hevia A et al (2009) Jagged 1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci U S A 106:6315–6320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Katoh M, Katoh M (2007) Integrative genomic analyses on HES/HEY family: Notch-independent HES1, HES3 transcription in undifferentiated ES cells, and Notch-dependent HES1, HES5, HEY1, HEY2, HEYL transcription in fetal tissues, adult tissues, or cancer. Int J Oncol 31:461–466

    CAS  PubMed  Google Scholar 

  64. Weng MT, Tsao PN, Lin HL et al (2015) Hes1 increases the invasion ability of colorectal cancer cells via the STAT3-MMP14 pathway. PLoS One 10:1–13

    Article  Google Scholar 

  65. Palomero T, Lim WK, Odom DT et al (2006) NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci U S A 103:18261–18266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yuan X, Wu H, Xu H et al (2015) Meta-analysis reveals the correlation of Notch signaling with non-small cell lung cancer progression and prognosis. Sci Rep 5:1–12

    Google Scholar 

  67. Dai Y, Wilson G, Huang B et al (2014) Silencing of Jagged1 inhibits cell growth and invasion in colorectal cancer. Cell Death Dis 5:1–9

    Article  CAS  Google Scholar 

  68. Koduru S, Kumar R, Srinivasan S et al (2010) Notch-1 inhibition by withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther 9:202–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kismali G, Aydin F, Yesildal F et al (2013) Effect of piperlongumine on angiogenesis in chick chorioallontoic membrane model. Eur J Cancer 49:S129

    Google Scholar 

  70. Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13:871–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Han JG, Gupta SC, Prasad S, Aggarwal BB (2014) Piperlongumine chemosensitizes tumor cells through interaction with cysteine 179 of IκB Kinase, leading to suppression of NF-κB regulated gene products. Mol Cancer Ther 13:2422–2435

    Article  CAS  PubMed  Google Scholar 

  72. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278:16–27

    Article  CAS  PubMed  Google Scholar 

  73. Said AH, Raufman JP, Xie G (2014) The role of matrix metalloproteinases in colorectal cancer. Cancers (Basel) 6:366–375

    Article  Google Scholar 

  74. Bond M, Chase AJ, Baker AH, Newby AC (2001) Inhibition of transcription factor NF-κB reduces matrix metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovasc Res 50:556–565

    Article  CAS  PubMed  Google Scholar 

  75. Zhang Y, Weinberg RA (2018) Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med 12:361–373

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wu Y, Deng J, Rychahou PG et al (2009) Stabilization of Snail by NF-κB is required for inflammation induced cell migration and invasion. Cancer Cell 15:416–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu S, Shi L, Wang Y et al (2018) Stabilization of slug by NF-κB is essential for TNF-α induced migration and epithelial-mesenchymal transition in head and neck squamous cell carcinoma cells. Cell Physiol Biochem 47:567–578

    Article  CAS  PubMed  Google Scholar 

  78. Wu T-J, Hsu JL, Yang N-K et al (2012) Epithelial mesenchymal transition induced by TNF-α requires NF-κB mediated transcriptional upregulation of Twist 1. Cancer Res 72:1290–1300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Nomura A, Majumder K, Giri B et al (2016) Inhibition of NF-kappa B pathway leads to deregulation of epithelial-mesenchymal transition and neural invasion in pancreatic cancer. Lab Investig 96:1268–1278

    Article  CAS  PubMed  Google Scholar 

  80. Du L, Li J, Lei L et al (2018) High vimentin expression predicts a poor prognosis and progression in colorectal cancer: a study with meta-analysis and TCGA database. Biomed Res Int 2018:1–14

    Google Scholar 

  81. kumar PA, Divya T, Kumar K et al (2017) Colorectal carcinogenesis: insights into the cell death and signal transduction pathways: a review. World J Gastroenterol Oncol 10:244–259

    Google Scholar 

  82. Delaney LM, Farias N, Ghassemi Rad J et al (2020) The natural alkaloid piperlongumine inhibits metastatic activity and epithelial to mesenchymal transition of triple negative mammary carcinoma cells. Nutr Cancer 2020:1–14

    CAS  Google Scholar 

  83. Zou Y, Zhao D, Yan C et al (2018) Novel ligustrazine-based analogs of piperlongumine potently suppress proliferation and metastasis of colorectal cancer cells in vitro and in vivo. J Med Chem 61:1821–1832

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance from the University Grants Commission (UGC), New Delhi, India, as the department is supported under the UGC SAP program. Sandeep Kumar thanks UGC, New Delhi, for providing Senior Research Fellowship to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navneet Agnihotri.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Agnihotri, N. Piperlongumine targets NF-κB and its downstream signaling pathways to suppress tumor growth and metastatic potential in experimental colon cancer. Mol Cell Biochem 476, 1765–1781 (2021). https://doi.org/10.1007/s11010-020-04044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-04044-7

Keywords

Navigation