Skip to main content
Log in

Actions and mechanisms of reactive oxygen species and antioxidative system in semen

  • Review Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Oxidative stress caused by the production of reactive oxygen species (ROS) in excess of the defense capability of the body’s antioxidative system is one of the primary reasons of sperm dysfunction. ROS, including free radicals, oxygen ions, and peroxides, are by-products of normal cellular metabolism. These molecules are important in physiological processes and cellular signaling pathways. Moderate amounts of ROS are indispensable for sperm physiology, such as capacitation, hyperactivation, and sperm-egg fusion. However, relatively high level of ROS can disrupt the integrity of sperm DNA and limit the fertilizing potential because of the compromised lipids and proteins in the sperm membrane. The antioxidative system of semen is composed of enzymatic and non-enzymatic antioxidants which interact with each other to maintain an intricate balance between ROS production and scavenging system. This review highlights the mechanisms of ROS production and elimination as well as the physiological and pathological effects on spermatozoa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trussell, J. C. Optimal diagnosis and medical treatment of male infertility. Semin Reprod Med 31:235–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. McLachlan, R. I. & de Kretser, D. M. Male infertility: the case for continued research. Med J Aust 174:116–117 (2001).

    CAS  PubMed  Google Scholar 

  3. Aitken, R. J., Smith, T. B., Jobling, M. S., Baker, M. A. & De Iuliis, G. N. Oxidative stress and male reproductive health. Asian J Androl 16:31–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Da Ros, V. G. et al. Impaired sperm fertilizing ability in mice lacking Cysteine-RIch Secretory Protein 1 (CRISP1). Dev Biol 320:12–18 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. MacLeod, J. The role of oxygen in the metabolism and motility of human spermatozoa. Am J Physiol 138:512–518 (1943).

    CAS  Google Scholar 

  6. Greco, E. et al. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl 26:349–353 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Aitken, R. J., Baker, M. A., De Iuliis, G. N. & Nixon, B. New insights into sperm physiology and pathology. Handb Exp Pharmacol 198:99–115 (2010).

    Article  CAS  Google Scholar 

  8. Butler, A. et al. Reproductive pathology and sperm physiology in acid sphingomyelinase-deficient mice. Am J Pathol 161:1061–1075 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bansal, A. K. & Bilaspuri, G. S. Impacts of oxidative stress and antioxidants on semen functions. Vet Med Int (2010), doi: 10.4061/2011/686137

    Google Scholar 

  10. Tremellen, K. Oxidative stress and male infertility -a clinical perspective. Hum Reprod Update 14:243–258 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Cheeseman, K. H. & Slater, T. F. An introduction to free radical biochemistry. Br Med Bull 49:481–493 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Henkel, R. R. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. J Asian J Androl 13:43–52 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Bae, Y. S., Oh, H., Rhee, S. G. & Yoo, Y. D. Regulation of reactive oxygen species generation in cell signaling. Mol Cells 32:491–509 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wood, Z. A., Poole, L. B. & Karplus, P. A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300:650–653 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Paulsen, C. E. & Carroll, K. S. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 113:4633–4679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bindoli, A., Fukuto, J. M. & Forman, H. J. Thiol chemistry in peroxidase catalysis and redox signaling. Antioxid Redox Signal 10:1549–1564 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. St-Pierre, J., Buckingham, J. A., Roebuck, S. J. & Brand, M. D. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Panieri, E. & Santoro, M. M. ROS signaling and redox biology in endothelial cells. Cell Mol Life Sci 72:3281–3303 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Forman, H. J., Davies, K. J. A. & Ursini, F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med 66:24–35 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Sagi, O., Wolfson, M., Utko, N., Muradian, K. & Fraifeld, V. p66 ShcA and ageing: modulation by longevitypromoting agent aurintricarboxylic acid. Mech Ageing Dev 126:249–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Trinei, M. et al. A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidationdamaged DNA and oxidative stress-induced apoptosis. Oncogene 21:3872–3878 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Giorgio, M. et al. Electron transfer between cytochrome c and p66 Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221–233 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Paulsen, C. E. & Carroll, K. S. Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol 5:47–62 (2009).

    Article  CAS  Google Scholar 

  24. Chen, K., Craige, S. E. & Keaney, J. F. Jr. Downstream targets and intracellular compartmentalization in Nox signaling. Antioxid Redox Signal 11:2467–2480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ameziane-El-Hassani, R. et al. Dual oxidase-2 has an intrinsic Ca2+-dependent H2O2-generating activity. J Biol Chem 34:30046–30054 (2005).

    Article  CAS  Google Scholar 

  26. Garrido, N., Meseguer, M., Simon, C., Pellicer, A. & Remohi, J. Pro-oxidative and anti-oxidative imbalance in human semen and its relation with male fertility. Asian J Androl 6:59–66 (2004).

    CAS  PubMed  Google Scholar 

  27. Aitken, R. J. The Amoroso Lecture The human spermatozoon-a cell in crisis?. J Reprod Fertil 115:1–7 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Agarwal, A. & Sekhon, L. H. The role of antioxidant therapy in the treatment of male infertility. Hum Fertil (Camb) 13:217–225 (2010).

    Article  Google Scholar 

  29. Plante, M., De Lamirande, E. & Gagnon, C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril 62:387–393 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Kaleli, S., Öçer, F., Irez, T., Budak, E. & Aksu, M. F. Does leukocytospermia associate with poor semen parameters and sperm functions in male infertility?: The role of different seminal leukocyte concentrations. Eur J Obstet Gynecol Reprod Biol 89:185–191 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Aziz, N., Agarwal, A., Lewis-Jones, I., Sharma, R. K. & Thomas, A. J. Jr. Novel associations between specific sperm morphological defects and leukocytospermia. Fertil Steril 82:621–627 (2004).

    Article  PubMed  Google Scholar 

  32. Tremellen, K. & Tunc, O. Macrophage activity in semen is significantly correlated with sperm quality in infertile men. Int J Androl 33:823–831 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Mupfiga, C., Fisher, D., Kruger, T. & Henkel, R. The relationship between seminal leukocytes, oxidative status in the ejaculate, and apoptotic markers in human spermatozoa. Syst Biol Reprod Med 59:304–311 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Morgan, M. J. & Liu, Z. G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Tremellen, K. & Tuncx, K. Macrophage activity in semen is significantly correlated with sperm quality in infertile men. Int J Androl 33:823–831 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Barraud-Lange, V. et al. Seminal leukocytes are Good Samaritans for spermatozoa. Fertil Steril 96:1315–1319 (2011).

    Article  PubMed  Google Scholar 

  37. Kiessling, A. A., Lamparelli, N., Yin, H. Z., Seibel, M. M. & Eyre, R. C. Semen leukocytes: friends or foes?. Fertil Steril 64:196–198 (1995).

    CAS  PubMed  Google Scholar 

  38. Tomlinson, M. J., White, A., Barratt, C. L., Bolton, A. E. & Cooke, I. D. The removal of morphologically abnormal sperm forms by phagocytes: a positive role for seminal leukocytes. Hum Reprod 7:517–522 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Piasecka, M. et al. Novel morphological findings of human sperm removal by leukocytes in in vivo and in vitro conditions: preliminary study. Am J Reprod Immunol 72:348–358 (2014).

    Article  PubMed  Google Scholar 

  40. Kothari, S., Thompson, A., Agarwal, A. & du Plessis, S. S. Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol 48:425–435 (2010).

    CAS  PubMed  Google Scholar 

  41. Aitken, R. J., Ryan, A. L., Baker, M. A. & McLaughlin, E. A. Redox activity associated with the maturation and capacitation of mammalian spermatozoa. Free Radic Biol Med 36:994–1010 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. O’Flaherty, C. & de Souza, A. R. Hydrogen peroxide modifies human sperm peroxiredoxins in a dose-dependent manner. Biol Reprod 84:238–247 (2011).

    Article  PubMed  CAS  Google Scholar 

  43. Gil-Guzman, E. et al. Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation. Hum Reprod 16:1922–1930 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Fisher, A. B., Dodia, C., Manevich, Y., Chen, J. W. & Feinstein, S. I. Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase. J Biol Chem 30:21326–21334 (1999).

    Article  Google Scholar 

  45. Noblanc, A. et al. Epididymis response partly compensates for spermatozoa oxidative defects in snGPx4 and GPx5 double mutant mice. PLoS One 7:e38565 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Puglisi, R. et al. The nuclear form of glutathione peroxidase 4 is associated with sperm nuclear matrix and is required for proper paternal chromatin decondensation at fertilization. J Cell Physiol 227:1420–1427 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Noblanc, A. et al. Epididymis response partly compensates for spermatozoa oxidative defects in snGPx4 and GPx5 double mutant mice. PLoS One 7:e38565 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ozkosem, B., Feinstein, S. I., Fisher, A. B. & O’Flaherty, C. Absence of Peroxiredoxin 6 Amplifies the Effect of Oxidant Stress on Mobility and SCSA/CMA3 Defined Chromatin Quality and Impairs Fertilizing Ability of Mouse Spermatozoa. Biol Reprod 94:68 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Calvin, H. & Bedford, J. Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fertil Suppl 13:Suppl 13:65–75 (1971).

    Google Scholar 

  50. Fujii, J. & Imai, H. Redox reactions in mammalian spermatogenesis and the potential targets of reactive oxygen species under oxidative stress. Spermatogenesis 4:e979108 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Awda, B. J. & Buhr, M. M. Extracellular signal-regulated kinases (ERKs) pathway and reactive oxygen species regulate tyrosine phosphorylation in capacitating boar spermatozoa. Biol Reprod 83:750–758 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Ickowicz, D., Finkelstein, M. & Breitbart, H. Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases. Asian J Androl 14:816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Visconti, P. E. Understanding the molecular basis of sperm capacitation through kinase design. Proc Natl Acad Sci U S A 106:667–668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Baker, M. A. & Aitken, R. J. The importance of redox regulated pathways in sperm cell biology. Mol Cell Endocrinol 216:47–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Nolan, M. A. Sperm-specific protein kinase A catalytic subunit Calpha2 orchestrates cAMP signaling for male fertility. Proc Natl Acad Sci U S A 101:13483–13488 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carlson, A. E., Hille, B. & Babcock, D. F. External Ca2+ acts upstream of adenylyl cyclase SACY in the bicarbonate signaled activation of sperm motility. Dev Biol 312:183–192 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aitken, R. J., Harkiss, D., Knox, W., Paterson, M. & Irvine, D. S. A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J Cell Sci 111:645–656 (1998).

    CAS  PubMed  Google Scholar 

  58. Belén Herrero, M., Chatterjee, S., Lefièvre, L., de Lamirande, E. & Gagnon, C. Nitric oxide interacts with the cAMP pathway to modulate capacitation of human spermatozoa. Free Radic Biol Med 29:522–536 (2000).

    Article  PubMed  Google Scholar 

  59. de Lamirande, E. & O’Flaherty, C. Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta 1784:106–115 (2008).

    Article  PubMed  CAS  Google Scholar 

  60. Agarwal, A., Virk, G., Ong, C. & du Plessis, S. S. Effect of oxidative stress on male reproduction. World J Mens Health 32:1–17 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lamirande, E. D. & Gagnon, C. Reactive oxygen species and human spermatozoa. J Androl 13:368–378 (1992).

    PubMed  Google Scholar 

  62. O’Flaherty, C. Redox regulation of mammalian sperm capacitation. Asian J Androl 17:583–590 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Florman, H. M., Jungnickel, M. K. & Sutton, K. A. Regulating the acrosome reaction. Int J Dev Biol 52:503–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Aitken, R. J. & Clarkson, J. S. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil 81:459–469 (1987).

    Article  CAS  PubMed  Google Scholar 

  65. Breitbart, H. & Naor, Z. Protein kinases in mammalian sperm capacitation and the acrosome reaction. Rev Reprod 4:151–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Aitken, R. J., Paterson, M., Fisher, H., Buckingham, D. W. & van Duin, M. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci 108:2017–2025 (1995).

    CAS  PubMed  Google Scholar 

  67. Griveau, J. E., Renard, P. & Le Lannou, D. An in vitro promoting role for hydrogen peroxide in human sperm capacitation. Int J Androl 17:300–307 (1997).

    Article  Google Scholar 

  68. Lamirande, E. D. & Gagnon, C. A positive role for the superoxide anion in triggering hyperactivation and capacitation of human spermatozoa. Int J Androl 16:21–25 (1993).

    Article  PubMed  Google Scholar 

  69. Goldman, R., Ferber, E. & Zort, U. Reactive oxygen species are involved in the activation of cellular phospholipase A2. FEBS Lett 309:190–192 (1993).

    Article  Google Scholar 

  70. Breitbart, H. & Finkelstein, M. Regulation of Sperm Capacitation and the Acrosome Reaction by PIP 2 and Actin Modulation. Asian J Androl 17:597–600 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Griveau, J. F., Renard, P. & Lannou, D. Superoxide anion production by human spermatozoa as a part of the ionophore-induced acrosome reaction process. Int J Androl 18:67–74 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Khosrowbeygi, A. & Zarghami, N. Fatty acid composition of human spermatozoa and seminal plasma levels of oxidative stress biomarkers in subfertile males. Prostaglandins Leukot Essent Fatty Acids 77:117–121 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Aksoy, Y., Aksoy, H., Altınkaynak, K., Aydin, H. R. & Ozkan, A. Sperm fatty acid composition in subfertile men. Prostaglandins Leukot Essent Fatty Acids 75:75–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Bell, M., Wang, R., Hellstrom, W. J. & Sikka, S. C. Effect of cryoprotective additives and cryopreservation protocol on sperm membrane lipid peroxidation and recovery of motile human sperm. J Androl 14:472–478 (1993).

    CAS  PubMed  Google Scholar 

  75. Saalu, L. C. The incriminating role of reactive oxygen species in idiopathic male infertility: an evidence based evaluation. Pak J Biol Sci 13:413–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Kuiper, H. C., Miranda, C. L, Sowell, J. D. & Stevens, J. F. Mercapturic acid conjugates of 4-hydroxy-2-nonenal and 4-oxo-2-nonenal metabolites are in vivo markers of oxidative stress. J Biol Chem 283:17131–17138 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Berlett, B. S. & Stadtman, E. R. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Garrison, W. M. Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem Rev 87:381–398 (1987).

    Article  CAS  Google Scholar 

  79. Levine, R. L., Mosoni, L., Berlett, B. S. & Stadtman, E. R. Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A 93:15036–15040 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A. & Colombo, R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Dean, R. T., Fu, S., Stocker, R. & Davies, M. J. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 324:1–18 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Agarwal, A. & Said, T. M. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int 95:503–507 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Goldberg, R. B., Geremia, R. & Bruce, W. R. Histone synthesis and replacement during spermatogenesis in the mouse. Differentiation 7:167–180 (1977).

    Article  CAS  PubMed  Google Scholar 

  84. Saowaros, W. & Panyim, S. The formation of disulfide bonds in human protamines during sperm maturation. Experientia 35:191–192 (1979).

    Article  CAS  PubMed  Google Scholar 

  85. Sakkas, D. & Alvarez, J. G. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 93:1027–1036 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Ramos, L. et al. Incomplete nuclear transformation of human spermatozoa in oligo-astheno-teratospermia: characterization by indirect immunofluorescence of chromatin and thiol status. Hum Reprod 23:259–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Moustafa, M. H. et al. Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod 19:129–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Barroso, G., Morshedi, M. & Oehninger, S. Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Hum Reprod 15:1338–1344 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Saleh, R. A. et al. Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril 80:1431–1436 (2003).

    Article  PubMed  Google Scholar 

  90. Burns, P. D. & Herickhoff, L. A. DNA Fragmentation as an Early Indicator of Extender Efficacy: A Preliminary Study. J Equine Vet Sci 34:375–379 (2014).

    Article  Google Scholar 

  91. Kumar, A., Pottiboyina, V. & Sevilla, M. D. Hydroxyl radical (OH•) reaction with guanine in an aqueous environment: a DFT study. J Phys Chem B 115:15129–15137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Madugundu, G. S., Cadet, J. & Wagner, J. R. Hydroxylradical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Nucleic Acids Research 42:7450–7460 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J. & Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Pogozelski, W. K. & Tullius, T. D. Oxidative strand scission of nucleic acids: routes initiated by hydrogen abstraction from the sugar moiety. Chem Rev 98:1089–1108 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Steenken, S. Purine bases, nucleosides, and nucleotides: aqueous solution redox chemistry and transformation reactions of their radical cations and e-and OH adducts. Chem Rev 89:503–520 (1989).

    Article  CAS  Google Scholar 

  96. Burrows, C. J. & Muller, J. G. Oxidative nucleobase modifications leading to strand scission. Chem Rev 98:1109–1152 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Wu, C., Chen, S. T., Peng, K. H., Cheng, T. J. & Wu, K. Y. Concurrent quantification of multiple biomarkers indicative of oxidative stress status using liquid chromatography-tandem mass spectrometry. Anal Biochem (2016), doi: 10.1016/j.ab.2016.07.030

    Google Scholar 

  98. Makker, K., Agarwal, A. & Sharma, R. Oxidative stress & male infertility. Indian J Med Res 129:357–367 (2009).

    CAS  PubMed  Google Scholar 

  99. Gaur, D. S., Talekar, M. & Pathak, V. P. Effect of cigarette smoking on semen quality of infertile men. Singapore Med J 48:119–123 (2007).

    CAS  PubMed  Google Scholar 

  100. Ramlau-Hansen, C. H. et al. Is smoking a risk factor for decreased semen quality? A cross-sectional analysis. Hum Reprod 22:188–196 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Hammadeh, M. E., Hamad, M. F., Montenarh, M. & Fischer-Hammadeh, C. Protamine contents and P1/ P2 ratio in human spermatozoa from smokers and non-smokers. Hum Reprod 25:2708–2720 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Saleh, R. A., Agarwal, A., Sharma, R. K., Nelson, D. R. & Thomas, A. J. Effect of cigarette smoking on levels of seminal oxidative stress in infertile men: a prospective study. Fertil Steril 78:491–499 (2002).

    Article  PubMed  Google Scholar 

  103. Pryor, W. A. & Stone, K. Oxidants in cigarette smoke radicals, hydrogen peroxide, peroxynitrate, and peroxynitritea. Ann N Y Acad Sci 686:12–27 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Zhu, Q. et al. Ethanol exposure enhances apoptosis within the testes. Alcohol Clin Exp Res 24:1550–1556 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Maneesh, M., Dutta, S., Chakrabarti, A. & Vasudevan, D. M. Alcohol abuse-duration dependent decrease in plasma testosterone and antioxidants in males. Indian J Physiol Pharmacol 50:291–296 (2006).

    CAS  PubMed  Google Scholar 

  106. Kim, J. S. et al. Genistein Mitigates Radiation-induced Testicular Injury. Phytother Res 26:1119–1125 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Angelopoulou, R., Lavranos, G. & Manolakou, P. ROS in the aging male: model diseases with ROSrelated pathophysiology. Reprod Toxicol 28:167–171 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Coccuzza, M., Sikka, S. C., Athayde, K. S. & Agarwal, A. Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int Braz J Urol 33:603–621 (2007).

    Article  Google Scholar 

  109. Esmekaya, M. A., Ozer, C. & Seyhan, N. 900 MHz pulse-modulated radiofrequency radiation induces oxidative stress on heart, lung, testis and liver tissues. Gen Physiol Biophys 30:84–89 (2011).

    Article  PubMed  Google Scholar 

  110. Friedman, J., Kraus, S., Hauptman, Y., Schiff, Y. & Seger, R. Mechanism of shortterm ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J 405:559–568 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Agarwal, A. et al. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril 92:1318–1325 (2008).

    Article  PubMed  Google Scholar 

  112. Pino, J. A. et al. Differential effects of temperature on reactive oxygen/nitrogen species production in rat pachytene spermatocytes and round spermatids. Reproduction 145:203–212 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Esfandiari, N. et al. Effects of temperature on sperm motion characteristics and reactive oxygen species. Int J Fertil Womens Med 47:227–235 (2002).

    PubMed  Google Scholar 

  114. Wang, A. W. et al. Reactive oxygen species generation by seminal cells during cryopreservation. Urology 49:921–925 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Adedara, I. A. & Farombi, E. O. Induction of oxidative damage in the testes and spermatozoa and hematotoxicity in rats exposed to multiple doses of ethylene glycol monoethyl ether. Hum Exp Toxicol 29:801–812 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Kazemi, S., Feizi, F., Aghapour, F., Joorsaraee, G. A. & Moghadamnia, A. A. Histopathology and histomorphometric investigation of bisphenol a and nonylphenol on the male rat reproductive system. N Am J Med Sci 8:215–221 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hong, J. et al. Exposure of preimplantation embryos to low-dose bisphenol A impairs testes development and suppresses histone acetylation of StAR promoter to reduce production of testosterone in mice. Mol Cell Endocrinol 427:101–111 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Chitra, K. C., Latchoumycandane, C. & Mathur, P. P. Induction of oxidative stress by bisphenol A in the epididymal sperm of rats. Toxicology 185:119–127 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Kazemi, S. et al. Induction Effect of Bisphenol A on Gene Expression Involving Hepatic Oxidative Stress in Rat. Oxid Med Cell Longev 2016:6298515 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lee, E. et al. Effect of di(n-butyl) phthalate on testicular oxidative damage and antioxidant enzymes in hyperthyroid rats. Environ Toxicol 22:245–255 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Kasahara, E. et al. Role of oxidative stress in germ cell apoptosis induced by di(2-ethylhexyl)phthalate. Biochem J 365:849–856 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Walczak-Jedrzejowska, R., Wolski, J. K. & Slowikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Cent European J Urol 6:60–67 (2013).

    Article  Google Scholar 

  123. Aitken, R. J. & Roman, S. D. Antioxidant systems and oxidative stress in the testes. Adv Exp Med Biol 636:154–171 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Chen, S. J., Allam, J. P., Duan, Y. G. & Haidl, G. Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch Gynecol Obstet 288:191–199 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Fraczek, M. & Kurpisz, M. The redox system in human semen and peroxidative damage of spermatozoa. Postepy Hig Med Dosw (Online) 59:523–534 (2004).

    Google Scholar 

  126. Gałecka, E., Jacewicz, R., Mrowicka, M., Florkowski, A. & Gałecki, P. Antioxidative enzymes-structure, properties, functions. Pol Merkur Lekarski 25:266 (2008).

    PubMed  Google Scholar 

  127. Lundwall, Å., Bjartell, A. & Olsson, A. Y. Semenogelin I and II, the predominant human seminal plasma proteins, are also expressed in non-genital tissues. Mol Hum Reprod 8:805–810 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Yeung, C. H. et al. Studies on the origin of redox enzymes in seminal plasma and their relationship with results of in-vitro fertilization. Mol Hum Reprod 4:835–839 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Vaisberg, C. N., Jelezarsky, L. V., Dishlianova, B. & Chaushev, T. A. Activity, substrate detection and immunolocalization of glutathione peroxidase (GPx) in bovine reproductive organs and semen. Theriogenology 64:416–428 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Williams, A. C. & Ford, W. C. L. Functional significance of the pentose phosphate pathway and glutathione reductase in the antioxidant defenses of human sperm. Biol Reprod 71:1309–1316 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Giannattasio, A. et al. Glutathione peroxidase (GPX) activity in seminal plasma of healthy and infertile males. J Endocrinol Invest 25:983–986 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Atig, F. et al. Altered antioxidant status and increased lipid per-oxidation in seminal plasma of tunisian infertile men. Int J Biol Sci 8:139–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Keskes-Ammar, L. et al. Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infertile men. Arch Androl 49:83–94 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Comhaire, F. H. et al. The effects of combined conventional treatment, oral antioxidants and essential fatty acids on sperm biology in subfertile men. Prostaglandins Leukot Essent Fatty Acids 63:159–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Moslemi, M. K. & Tavanbakhsh, S. Selenium-vitamin E supplementation in infertile men: effects on semen parameters and pregnancy rate. Int J Gen Med 4:99–104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Akmal, M. et al. Improvement in human semen quality after oral supplementation of vitamin C. J Med Food 9:440–442 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Sönmez, M., Türk, G. & Yüce, A. The effect of ascorbic acid supplementation on sperm quality, lipid peroxidation and testosterone levels of male Wistar rats. Theriogenology 63:2063–2072 (2005).

    Article  PubMed  CAS  Google Scholar 

  138. Song, G. J., Norkus, E. P. & Lewis, V. Relationship between seminal ascorbic acid and sperm DNA integrity in infertile men. Int J Androl 29:569–575 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Hogarth, C. A. & Griswold, M. D. The key role of vitamin A in spermatogenesis. J Clin Invest 120:956–962 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Matthews, R. G. Methylenetetrahydrofolate reductase: a common human polymorphism and its biochemical implications. J Chem Rec 2:4–12 (2002).

    Article  CAS  Google Scholar 

  141. Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr Biol 24:453–462 (2014).

    Article  CAS  Google Scholar 

  142. Almbro, M., Dowling, D. K. & Simmons, L. W. Effects of vitamin E and beta-carotene on sperm competitiveness. Ecol Lett 14:891–895 (2011).

    Article  PubMed  Google Scholar 

  143. Mora-Esteves, C. & Shin, D. Nutrient supplementation: improving male fertility fourfold. Semin Reprod Med 31:293–300 (2013).

    Article  PubMed  Google Scholar 

  144. Prochaska, H. J. & Talalay, P. Regulatory mechanisms of monofunctional and bifunctional anticarcinogenic enzyme inducers in murine liver. Cancer Res 48:4776–4782 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhou.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Li, C., Chen, L. et al. Actions and mechanisms of reactive oxygen species and antioxidative system in semen. Mol. Cell. Toxicol. 13, 143–154 (2017). https://doi.org/10.1007/s13273-017-0015-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-017-0015-8

Keywords

Navigation