Skip to main content
Log in

Complete genome sequence of Rufibacter sp. DG31D, a bacterium resistant to gamma and UV radiation toxicity

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

The ionizing radiation toxicity becomes a major concern for the modern world, recent years, several special interest has been given to the research for the radiation resistant and the mechanisms of which the radiation resistant bacteria survive after the irradiation. In the current study, we have isolated strain DG31D was isolated from gamma ray-irradiated soil sample and showed resistant to gamma and UV radiation. The aim of this study is to understanding the radiation resistant mechanisms and their genomic features of the strain DG31D, which can be potentially used for the biotechnological application to degrade harmful soil contamination near the nuclear power stations and other radiation-affected areas. Strain DG31D showed resistant to UV and gamma radiation with D10 value of 10 kGy. The genome comprised of 4,820,793 bp with the G+C content of 51.4%. It contains the genomic features of enzymes involved in the nucleotide excision repair (NER) pathway that protect the damaged DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abaydulla, G. et al. Rufibacter tibetensis gen. nov., sp. nov., a novel member of the family Cytophagaceae isolated from soil. Antonie Van Leeuwenhoek 101:725–731 (2012).

    Article  PubMed  CAS  Google Scholar 

  2. Srinivasan, S. et al. Hymenobacter terrae sp. nov., a bacterium isolated from soil. Curr Microbiol 70:643–650 (2015).

    Article  PubMed  CAS  Google Scholar 

  3. Collins, M. D., Hutson, R. A., Grant, I. R. & Patterson, M. F. Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol 50:731–734 (2000).

    Article  PubMed  Google Scholar 

  4. Zhang, Q. et al. Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 57:1752–1756 (2007).

    Article  PubMed  CAS  Google Scholar 

  5. Dai, J. et al. Hymenobacter tibetensis sp. nov., a UV-resistant bacterium isolated from Qinghai-Tibet plateau. Syst Appl Microbiol 32:543–548 (2009).

    Article  PubMed  CAS  Google Scholar 

  6. Chung, A. P., Lopes, A., Nobre, M. F. & Morais, P. V. Hymenobacter perfusus sp. nov., Hymenobacter flocculans sp. nov. and Hymenobacter metalli sp. nov. three new species isolated from an uranium mine waste water treatment system. Syst Appl Microbiol 33:436–43 (2010).

    Article  PubMed  CAS  Google Scholar 

  7. Lee, J. J. et al. Hymenobacter swuensis sp. nov., a gamma-radiation-resistant bacteria isolated from mountain soil. Curr Microbiol 68:305–310 (2014).

    Article  PubMed  CAS  Google Scholar 

  8. Jung, J. H. et al. Complete genome sequence of Hy-menobacter swuensis, an ionizing-radiation resistant bacterium isolated from mountain soil. J Biotechnol 178:65–66 (2014).

    Article  PubMed  CAS  Google Scholar 

  9. Srinivasan, S., Joo, E. S., Lee, J. J. & Kim, M. K. Hymenobacter humi sp. nov., a bacterium isolated from soil. Antonie Van Leeuwenhoek 107:1411–1419 (2015).

    Article  PubMed  CAS  Google Scholar 

  10. Zhang, Z. D. et al. Rufibacter roseus sp. nov., isolated from radiation-polluted soil. Int J Syst Evol Microbiol 65:1572–1577 (2015).

    Article  PubMed  CAS  Google Scholar 

  11. Polkade, A. V., Ramana, V. V., Joshi, A., Pardesi, L. & Shouche, Y. S. Rufibacter immobilis sp. nov., isolated from a high-altitude saline lake. Int J Syst Evol Microbiol 65:1592–1597 (2015).

    Article  PubMed  CAS  Google Scholar 

  12. Ortiz de Orue Lucana, D., Wedderhoff, I. & Groves, M. R. ROS-mediated signalling in bacteria: Zinc-containing Cys-X-X-Cys redox centres and iron-based oxidative stress. J Signal Transduct 2012:605905 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Waldeck, W. et al. RO S-mediated killing efficiency with visible light of bacteria carrying different red fluorochrome proteins. J Photochem Photobiol B 109:28–33 (2012).

    Article  PubMed  CAS  Google Scholar 

  14. Benson, D. A. et al. GenBank. Nucleic Acids Res 43: D30–35 (2015).

  15. Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kawanishi, M. et al. Molecular evidence of the involvement of the nucleotide excision repair (NER) system in the repair of the mono (ADP-ribosyl)ated DNA adduct produced by pierisin-1, an apoptosis-inducing protein from the cabbage butterfly. Chem Res Toxicol 20:694–700 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. Earl, A. M., Mohundro, M. M., Mian, I. S. & Battista, J. R. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. J Bacteriol 184:6216–6224 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Cai, Y., Geacintov, N. E. & Broyde, S. Ribonucleotides as nucleotide excision repair substrates. DNA Repair (Amst) 13:55–60 (2014).

    Article  CAS  Google Scholar 

  19. Ferrezuelo, F., Prieto-Alamo, M. J., Jurado, J. & Pueyo, C. Role of DNA repair by (A)BC excinuclease and Ogt alkyltransferase in the final distribution of LacI-d mutations induced by N-butyl-N-nitrosourea in Escherichia coli. Mutagenesis 13:507–514 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. Lee, J. J. et al. Deinococcus swuensis sp. nov., a gamma-radiation-resistant bacterium isolated from soil. J Microbiol 51:305–311 (2013).

    Article  PubMed  CAS  Google Scholar 

  21. Daly, M. J. A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–245 (2009).

    Article  PubMed  CAS  Google Scholar 

  22. Kim, O. S. et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 (2012).

    Article  PubMed  CAS  Google Scholar 

  23. Srinivasan, S. et al. Deinococcus radioresistens sp. nov., a UV and gamma radiation-resistant bacterium isolated from mountain soil. Antonie Van Leeuwenhoek 107:539–545 (2015).

    Article  PubMed  CAS  Google Scholar 

  24. Cha, S., Srinivasan, S., Seo, T. & Kim, M. K. Deinococcus soli sp. nov., a gamma-radiation-resistant bacterium isolated from rice field soil. Curr Microbiol 68: 777–783 (2014).

    Article  PubMed  CAS  Google Scholar 

  25. Srinivasan, S., Lee, J. J., Lim, S., Joe, M. & Kim, M. K. Deinococcus humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 62:2844–2850 (2012).

    Article  PubMed  CAS  Google Scholar 

  26. Srinivasan, S., Kim, M. K., Lim, S., Joe, M. & Lee, M. Deinococcus daejeonensis sp. nov., isolated from sludge in a sewage disposal plant. Int J Syst Evol Microbiol 62:1265–1270 (2012).

    Article  PubMed  CAS  Google Scholar 

  27. Im, S. et al. Comparative survival analysis of 12 histidine kinase mutants of Deinococcus radiodurans after exposure to DNA-damaging agents. Bioprocess Biosyst Eng 36:781–789 (2013).

    Article  PubMed  CAS  Google Scholar 

  28. Selvam, K., Duncan, J. R., Tanaka, M. & Battista, J. R. DdrA, DdrD, and PprA: components of UV and mitomycin C resistance in Deinococcus radiodurans R1. PLoS One 8:e69007 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Hall, T. A. In Nucleic acids symposium series 95–98 (1999).

    Google Scholar 

  30. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 (1997).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Kimura, M. The neutral theory of molecular evolution. Sci Am 241:98–100, 102, 108 passim (1979).

    Article  PubMed  CAS  Google Scholar 

  32. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425 (1987).

    PubMed  CAS  Google Scholar 

  33. Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Felsenstein, J. Confidence Limits on Phylogenies: An approach using the bootstrap. Evolution 39:783–791 (1985).

    Article  Google Scholar 

  35. Fitch, W. M. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst Zool 20:406–416 (1971).

    Article  Google Scholar 

  36. Field, D. et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26:541–547 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Markowitz, V. M. et al. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25:2271–2278 (2009).

    Article  PubMed  CAS  Google Scholar 

  38. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964 (1997).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25:1335–1337 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Young Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, S., Kim, M.K., Joo, E.S. et al. Complete genome sequence of Rufibacter sp. DG31D, a bacterium resistant to gamma and UV radiation toxicity. Mol. Cell. Toxicol. 11, 415–421 (2015). https://doi.org/10.1007/s13273-015-0044-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-015-0044-0

Keywords

Navigation